MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthreg Unicode version

Theorem opthreg 7335
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 7322 (via the preleq 7334 step). See df-op 3662 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
opthreg  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5  |-  A  e. 
_V
21prid1 3747 . . . 4  |-  A  e. 
{ A ,  B }
3 preleq.3 . . . . 5  |-  C  e. 
_V
43prid1 3747 . . . 4  |-  C  e. 
{ C ,  D }
5 prex 4233 . . . . 5  |-  { A ,  B }  e.  _V
6 prex 4233 . . . . 5  |-  { C ,  D }  e.  _V
71, 5, 3, 6preleq 7334 . . . 4  |-  ( ( ( A  e.  { A ,  B }  /\  C  e.  { C ,  D } )  /\  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D }
) )
82, 4, 7mpanl12 663 . . 3  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D } ) )
9 preq1 3719 . . . . . 6  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
109eqeq1d 2304 . . . . 5  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
11 preleq.2 . . . . . 6  |-  B  e. 
_V
12 preleq.4 . . . . . 6  |-  D  e. 
_V
1311, 12preqr2 3803 . . . . 5  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
1410, 13syl6bi 219 . . . 4  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1514imdistani 671 . . 3  |-  ( ( A  =  C  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D )
)
168, 15syl 15 . 2  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  B  =  D )
)
17 preq1 3719 . . . 4  |-  ( A  =  C  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
1817adantr 451 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
19 preq12 3721 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2019preq2d 3726 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { C ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2118, 20eqtrd 2328 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2216, 21impbii 180 1  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {cpr 3654
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-eprel 4321  df-fr 4368
  Copyright terms: Public domain W3C validator