MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthreg Unicode version

Theorem opthreg 7177
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 7164 (via the preleq 7176 step). See df-op 3533 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
opthreg  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5  |-  A  e. 
_V
21prid1 3618 . . . 4  |-  A  e. 
{ A ,  B }
3 preleq.3 . . . . 5  |-  C  e. 
_V
43prid1 3618 . . . 4  |-  C  e. 
{ C ,  D }
5 prex 4090 . . . . 5  |-  { A ,  B }  e.  _V
6 prex 4090 . . . . 5  |-  { C ,  D }  e.  _V
71, 5, 3, 6preleq 7176 . . . 4  |-  ( ( ( A  e.  { A ,  B }  /\  C  e.  { C ,  D } )  /\  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D }
) )
82, 4, 7mpanl12 660 . . 3  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D } ) )
9 preq1 3590 . . . . . 6  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
109eqeq1d 2249 . . . . 5  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
11 preleq.2 . . . . . 6  |-  B  e. 
_V
12 preleq.4 . . . . . 6  |-  D  e. 
_V
1311, 12preqr2 3667 . . . . 5  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
1410, 13syl6bi 218 . . . 4  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1514imdistani 668 . . 3  |-  ( ( A  =  C  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D )
)
168, 15syl 16 . 2  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  B  =  D )
)
17 preq1 3590 . . . 4  |-  ( A  =  C  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
1817adantr 447 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
19 preq12 3592 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2019preq2d 3597 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { C ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2118, 20eqtrd 2273 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2216, 21impbii 179 1  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 175    /\ wa 357    = wceq 1608    e. wcel 1610   _Vcvv 2712   {cpr 3525
This theorem was proved from axioms:  ax-1 6  ax-2 7  ax-3 8  ax-mp 9  ax-5 1522  ax-6 1523  ax-7 1524  ax-gen 1525  ax-8 1612  ax-11 1613  ax-14 1615  ax-17 1617  ax-12o 1653  ax-10 1667  ax-9 1673  ax-4 1681  ax-16 1915  ax-ext 2222  ax-sep 4017  ax-nul 4025  ax-pr 4087  ax-reg 7164
This theorem depends on definitions:  df-bi 176  df-or 358  df-an 359  df-3an 935  df-tru 1309  df-ex 1527  df-nf 1529  df-sb 1872  df-eu 2106  df-mo 2107  df-clab 2228  df-cleq 2234  df-clel 2237  df-nfc 2362  df-ne 2402  df-ral 2499  df-rex 2500  df-rab 2502  df-v 2714  df-sbc 2907  df-dif 3061  df-un 3063  df-in 3065  df-ss 3069  df-nul 3343  df-if 3451  df-sn 3530  df-pr 3531  df-op 3533  df-br 3901  df-opab 3955  df-eprel 4177  df-fr 4224
  Copyright terms: Public domain W3C validator