MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelord Unicode version

Theorem ordelord 4372
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
StepHypRef Expression
1 eleq1 2316 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 687 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4357 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 313 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 simpll 733 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  Ord  A )
6 3anrot 944 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( z  e.  y  /\  y  e.  x  /\  x  e.  A )
)
7 3anass 943 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
86, 7bitr3i 244 . . . . . . . . . . 11  |-  ( ( z  e.  y  /\  y  e.  x  /\  x  e.  A )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
9 ordtr 4364 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  Tr  A
)
10 trel3 4081 . . . . . . . . . . . 12  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
119, 10syl 17 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
128, 11syl5bir 211 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( (
x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A ) )
1312impl 606 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A )
14 trel 4080 . . . . . . . . . . . . 13  |-  ( Tr  A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
159, 14syl 17 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
1615exp3acom23 1368 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  A ) ) )
1716imp31 423 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  y  e.  x
)  ->  y  e.  A )
1817adantrl 699 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  y  e.  A )
19 simplr 734 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  x  e.  A )
20 ordwe 4363 . . . . . . . . . 10  |-  ( Ord 
A  ->  _E  We  A )
21 wetrep 4344 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  ( z  e.  A  /\  y  e.  A  /\  x  e.  A
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2220, 21sylan 459 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
z  e.  A  /\  y  e.  A  /\  x  e.  A )
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
235, 13, 18, 19, 22syl13anc 1189 . . . . . . . 8  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2423ex 425 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
2524pm2.43d 46 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2625alrimivv 2014 . . . . 5  |-  ( ( Ord  A  /\  x  e.  A )  ->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
27 dftr2 4075 . . . . 5  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2826, 27sylibr 205 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
29 trss 4082 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
309, 29syl 17 . . . . . 6  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  C_  A ) )
31 wess 4338 . . . . . . 7  |-  ( x 
C_  A  ->  (  _E  We  A  ->  _E  We  x ) )
3220, 31syl5com 28 . . . . . 6  |-  ( Ord 
A  ->  ( x  C_  A  ->  _E  We  x ) )
3330, 32syld 42 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  _E  We  x ) )
3433imp 420 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  _E  We  x )
35 df-ord 4353 . . . 4  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
3628, 34, 35sylanbrc 648 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
374, 36vtoclg 2811 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
3837anabsi7 795 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   A.wal 1532    = wceq 1619    e. wcel 1621    C_ wss 3113   Tr wtr 4073    _E cep 4261    We wwe 4309   Ord word 4349
This theorem is referenced by:  tron  4373  ordelon  4374  ordtr2  4394  ordtr3  4395  ordintdif  4399  ordsuc  4563  ordsucss  4567  ordsucelsuc  4571  ordsucuniel  4573  limsssuc  4599  smores  6323  smo11  6335  smoord  6336  smoword  6337  smogt  6338  smorndom  6339  rdglim2  6399  oesuclem  6478  ordtypelem3  7189  r1val1  7412  rankr1ag  7428  fin23lem24  7902  onsuct0  24241  dford3  26474  ordpss  27008
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-tr 4074  df-eprel 4263  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353
  Copyright terms: Public domain W3C validator