MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelord Unicode version

Theorem ordelord 4430
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 684 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4415 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 311 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 simpll 730 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  Ord  A )
6 3anrot 939 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( z  e.  y  /\  y  e.  x  /\  x  e.  A )
)
7 3anass 938 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
86, 7bitr3i 242 . . . . . . . . . . 11  |-  ( ( z  e.  y  /\  y  e.  x  /\  x  e.  A )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
9 ordtr 4422 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  Tr  A
)
10 trel3 4137 . . . . . . . . . . . 12  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
119, 10syl 15 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
128, 11syl5bir 209 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( (
x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A ) )
1312impl 603 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A )
14 trel 4136 . . . . . . . . . . . . 13  |-  ( Tr  A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
159, 14syl 15 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
1615exp3acom23 1362 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  A ) ) )
1716imp31 421 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  y  e.  x
)  ->  y  e.  A )
1817adantrl 696 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  y  e.  A )
19 simplr 731 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  x  e.  A )
20 ordwe 4421 . . . . . . . . . 10  |-  ( Ord 
A  ->  _E  We  A )
21 wetrep 4402 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  ( z  e.  A  /\  y  e.  A  /\  x  e.  A
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2220, 21sylan 457 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
z  e.  A  /\  y  e.  A  /\  x  e.  A )
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
235, 13, 18, 19, 22syl13anc 1184 . . . . . . . 8  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2423ex 423 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
2524pm2.43d 44 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2625alrimivv 1622 . . . . 5  |-  ( ( Ord  A  /\  x  e.  A )  ->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
27 dftr2 4131 . . . . 5  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2826, 27sylibr 203 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
29 trss 4138 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
309, 29syl 15 . . . . . 6  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  C_  A ) )
31 wess 4396 . . . . . . 7  |-  ( x 
C_  A  ->  (  _E  We  A  ->  _E  We  x ) )
3220, 31syl5com 26 . . . . . 6  |-  ( Ord 
A  ->  ( x  C_  A  ->  _E  We  x ) )
3330, 32syld 40 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  _E  We  x ) )
3433imp 418 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  _E  We  x )
35 df-ord 4411 . . . 4  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
3628, 34, 35sylanbrc 645 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
374, 36vtoclg 2856 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
3837anabsi7 792 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696    C_ wss 3165   Tr wtr 4129    _E cep 4319    We wwe 4367   Ord word 4407
This theorem is referenced by:  tron  4431  ordelon  4432  ordtr2  4452  ordtr3  4453  ordintdif  4457  ordsuc  4621  ordsucss  4625  ordsucelsuc  4629  ordsucuniel  4631  limsssuc  4657  smores  6385  smo11  6397  smoord  6398  smoword  6399  smogt  6400  smorndom  6401  rdglim2  6461  oesuclem  6540  ordtypelem3  7251  r1val1  7474  rankr1ag  7490  fin23lem24  7964  onsuct0  24952  dford3  27224  ordpss  27757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411
  Copyright terms: Public domain W3C validator