Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALT Unicode version

Theorem ordelordALT 27572
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4413 using the Axiom of Regularity indirectly through dford2 7316. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. ordelordALT 27572 is ordelordALTVD 27911 without virtual deductions and was automatically derived from ordelordALTVD 27911 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALT  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem ordelordALT
StepHypRef Expression
1 ordtr 4405 . . . 4  |-  ( Ord 
A  ->  Tr  A
)
21adantr 453 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  Tr  A )
3 dford2 7316 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
43simprbi 452 . . . . 5  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
54adantr 453 . . . 4  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
6 3orcomb 946 . . . . 5  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
762ralbii 2570 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
85, 7sylib 190 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9 simpr 449 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  A )
10 tratrb 27570 . . 3  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
112, 8, 9, 10syl3anc 1184 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  Tr  B )
12 trss 4123 . . . 4  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
132, 9, 12sylc 58 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
14 ssralv2 27565 . . . 4  |-  ( ( B  C_  A  /\  B  C_  A )  -> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
1514ex 425 . . 3  |-  ( B 
C_  A  ->  ( B  C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ) )
1613, 13, 5, 15syl3c 59 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
17 dford2 7316 . 2  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
1811, 16, 17sylanbrc 647 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    \/ w3o 935    e. wcel 1685   A.wral 2544    C_ wss 3153   Tr wtr 4114   Ord word 4390
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511  ax-reg 7301
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-tr 4115  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394
  Copyright terms: Public domain W3C validator