Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Unicode version

Theorem ordelordALTVD 27656
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4351 using the Axiom of Regularity indirectly through dford2 7254. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 27317 is ordelordALTVD 27656 without virtual deductions and was automatically derived from ordelordALTVD 27656 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
1::  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A ) ).
2:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
3:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
4:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
5:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
6:4,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
7:6,6,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
8::  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9:8:  |-  A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
10:9:  |-  A. y  e.  A ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11:10:  |-  ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
12:11:  |-  A. x ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
13:12:  |-  A. x  e.  A ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
14:13:  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
15:14,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
16:4,15,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
17:16,7:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
qed:17:  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelordALTVD
StepHypRef Expression
1 idn1 27358 . . . . . 6  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A
) ).
2 simpl 445 . . . . . 6  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  A )
31, 2e1_ 27412 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
4 ordtr 4343 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
53, 4e1_ 27412 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
6 dford2 7254 . . . . . . 7  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
76simprbi 452 . . . . . 6  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
83, 7e1_ 27412 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
9 3orcomb 949 . . . . . . . . . . 11  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
109ax-gen 1536 . . . . . . . . . 10  |-  A. y
( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11 alral 2572 . . . . . . . . . 10  |-  ( A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. y  e.  A  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1210, 11e0_ 27560 . . . . . . . . 9  |-  A. y  e.  A  ( (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
13 ralbi 2650 . . . . . . . . 9  |-  ( A. y  e.  A  (
( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  -> 
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1412, 13e0_ 27560 . . . . . . . 8  |-  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
1514ax-gen 1536 . . . . . . 7  |-  A. x
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
16 alral 2572 . . . . . . 7  |-  ( A. x ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1715, 16e0_ 27560 . . . . . 6  |-  A. x  e.  A  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
18 ralbi 2650 . . . . . 6  |-  ( A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1917, 18e0_ 27560 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
208, 19e1bi 27414 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
21 simpr 449 . . . . 5  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  A )
221, 21e1_ 27412 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
23 tratrb 27315 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
24233exp 1155 . . . 4  |-  ( Tr  A  ->  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  ( B  e.  A  ->  Tr  B
) ) )
255, 20, 22, 24e111 27459 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
26 trss 4062 . . . . 5  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
275, 22, 26e11 27473 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
28 ssralv2 27310 . . . . 5  |-  ( ( B  C_  A  /\  B  C_  A )  -> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2928ex 425 . . . 4  |-  ( B 
C_  A  ->  ( B  C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ) )
3027, 27, 8, 29e111 27459 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
31 dford2 7254 . . . 4  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
3231simplbi2 611 . . 3  |-  ( Tr  B  ->  ( A. x  e.  B  A. y  e.  B  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  Ord  B )
)
3325, 30, 32e11 27473 . 2  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
3433in1 27355 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3094   Tr wtr 4053   Ord word 4328
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-reg 7239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-vd1 27354
  Copyright terms: Public domain W3C validator