Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Unicode version

Theorem ordelordALTVD 28716
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4416 using the Axiom of Regularity indirectly through dford2 7323. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 28357 is ordelordALTVD 28716 without virtual deductions and was automatically derived from ordelordALTVD 28716 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
1::  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A ) ).
2:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
3:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
4:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
5:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
6:4,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
7:6,6,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
8::  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9:8:  |-  A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
10:9:  |-  A. y  e.  A ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11:10:  |-  ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
12:11:  |-  A. x ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
13:12:  |-  A. x  e.  A ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
14:13:  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
15:14,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
16:4,15,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
17:16,7:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
qed:17:  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelordALTVD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 28398 . . . . . 6  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A
) ).
2 simpl 443 . . . . . 6  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  A )
31, 2e1_ 28461 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
4 ordtr 4408 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
53, 4e1_ 28461 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
6 dford2 7323 . . . . . . 7  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
76simprbi 450 . . . . . 6  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
83, 7e1_ 28461 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
9 3orcomb 944 . . . . . . . . . . 11  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
109ax-gen 1535 . . . . . . . . . 10  |-  A. y
( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11 alral 2603 . . . . . . . . . 10  |-  ( A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. y  e.  A  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1210, 11e0_ 28618 . . . . . . . . 9  |-  A. y  e.  A  ( (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
13 ralbi 2681 . . . . . . . . 9  |-  ( A. y  e.  A  (
( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  -> 
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1412, 13e0_ 28618 . . . . . . . 8  |-  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
1514ax-gen 1535 . . . . . . 7  |-  A. x
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
16 alral 2603 . . . . . . 7  |-  ( A. x ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1715, 16e0_ 28618 . . . . . 6  |-  A. x  e.  A  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
18 ralbi 2681 . . . . . 6  |-  ( A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1917, 18e0_ 28618 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
208, 19e1bi 28463 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
21 simpr 447 . . . . 5  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  A )
221, 21e1_ 28461 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
23 tratrb 28355 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
24233exp 1150 . . . 4  |-  ( Tr  A  ->  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  ( B  e.  A  ->  Tr  B
) ) )
255, 20, 22, 24e111 28508 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
26 trss 4124 . . . . 5  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
275, 22, 26e11 28522 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
28 ssralv2 28350 . . . . 5  |-  ( ( B  C_  A  /\  B  C_  A )  -> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2928ex 423 . . . 4  |-  ( B 
C_  A  ->  ( B  C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ) )
3027, 27, 8, 29e111 28508 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
31 dford2 7323 . . . 4  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
3231simplbi2 608 . . 3  |-  ( Tr  B  ->  ( A. x  e.  B  A. y  e.  B  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  Ord  B )
)
3325, 30, 32e11 28522 . 2  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
3433in1 28395 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933   A.wal 1529    = wceq 1625    e. wcel 1686   A.wral 2545    C_ wss 3154   Tr wtr 4115   Ord word 4393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-un 4514  ax-reg 7308
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-vd1 28394
  Copyright terms: Public domain W3C validator