MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelsuc Unicode version

Theorem ordelsuc 4627
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4625 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
21adantl 452 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
3 sucssel 4501 . . 3  |-  ( A  e.  C  ->  ( suc  A  C_  B  ->  A  e.  B ) )
43adantr 451 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
52, 4impbid 183 1  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696    C_ wss 3165   Ord word 4407   suc csuc 4410
This theorem is referenced by:  onsucmin  4628  onsucssi  4648  tfindsg2  4668  ordgt0ge1  6512  onomeneq  7066  omsucdomOLD  7072  cantnflem1  7407  r1ordg  7466  r1val1  7474  rankonidlem  7516  rankxplim3  7567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414
  Copyright terms: Public domain W3C validator