MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordequn Unicode version

Theorem ordequn 4668
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordequn  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )

Proof of Theorem ordequn
StepHypRef Expression
1 ordtri2or2 4664 . 2  |-  ( ( Ord  B  /\  Ord  C )  ->  ( B  C_  C  \/  C  C_  B ) )
2 ssequn1 3504 . . . . 5  |-  ( B 
C_  C  <->  ( B  u.  C )  =  C )
3 eqeq2 2439 . . . . 5  |-  ( ( B  u.  C )  =  C  ->  ( A  =  ( B  u.  C )  <->  A  =  C ) )
42, 3sylbi 188 . . . 4  |-  ( B 
C_  C  ->  ( A  =  ( B  u.  C )  <->  A  =  C ) )
5 olc 374 . . . 4  |-  ( A  =  C  ->  ( A  =  B  \/  A  =  C )
)
64, 5syl6bi 220 . . 3  |-  ( B 
C_  C  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )
7 ssequn2 3507 . . . . 5  |-  ( C 
C_  B  <->  ( B  u.  C )  =  B )
8 eqeq2 2439 . . . . 5  |-  ( ( B  u.  C )  =  B  ->  ( A  =  ( B  u.  C )  <->  A  =  B ) )
97, 8sylbi 188 . . . 4  |-  ( C 
C_  B  ->  ( A  =  ( B  u.  C )  <->  A  =  B ) )
10 orc 375 . . . 4  |-  ( A  =  B  ->  ( A  =  B  \/  A  =  C )
)
119, 10syl6bi 220 . . 3  |-  ( C 
C_  B  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )
126, 11jaoi 369 . 2  |-  ( ( B  C_  C  \/  C  C_  B )  -> 
( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C ) ) )
131, 12syl 16 1  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  =  ( B  u.  C )  ->  ( A  =  B  \/  A  =  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    u. cun 3305    C_ wss 3307   Ord word 4567
This theorem is referenced by:  ordun  4669  inar1  8634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pr 4390
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-tr 4290  df-eprel 4481  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571
  Copyright terms: Public domain W3C validator