Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orderseqlem Unicode version

Theorem orderseqlem 25277
Description: Lemma for poseq 25278 and soseq 25279. The function value of a sequene is either in  A or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
Assertion
Ref Expression
orderseqlem  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Distinct variable groups:    A, f, x    f, G, x    x, X
Allowed substitution hints:    F( x, f)    X( f)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 5517 . . . . 5  |-  ( f  =  G  ->  (
f : x --> A  <->  G :
x --> A ) )
21rexbidv 2671 . . . 4  |-  ( f  =  G  ->  ( E. x  e.  On  f : x --> A  <->  E. x  e.  On  G : x --> A ) )
3 orderseqlem.1 . . . 4  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
42, 3elab2g 3028 . . 3  |-  ( G  e.  F  ->  ( G  e.  F  <->  E. x  e.  On  G : x --> A ) )
54ibi 233 . 2  |-  ( G  e.  F  ->  E. x  e.  On  G : x --> A )
6 frn 5538 . . . . 5  |-  ( G : x --> A  ->  ran  G  C_  A )
7 unss1 3460 . . . . 5  |-  ( ran 
G  C_  A  ->  ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } ) )
86, 7syl 16 . . . 4  |-  ( G : x --> A  -> 
( ran  G  u.  {
(/) } )  C_  ( A  u.  { (/) } ) )
9 fvrn0 5694 . . . 4  |-  ( G `
 X )  e.  ( ran  G  u.  {
(/) } )
10 ssel 3286 . . . 4  |-  ( ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } )  ->  ( ( G `
 X )  e.  ( ran  G  u.  {
(/) } )  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) ) )
118, 9, 10ee10 1382 . . 3  |-  ( G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
1211rexlimivw 2770 . 2  |-  ( E. x  e.  On  G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
135, 12syl 16 1  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {cab 2374   E.wrex 2651    u. cun 3262    C_ wss 3264   (/)c0 3572   {csn 3758   Oncon0 4523   ran crn 4820   -->wf 5391   ` cfv 5395
This theorem is referenced by:  poseq  25278  soseq  25279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403
  Copyright terms: Public domain W3C validator