MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Unicode version

Theorem ordn2lp 4349
Description: An ordinal class cannot an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 4347 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
2 ordtr 4343 . . 3  |-  ( Ord 
A  ->  Tr  A
)
3 trel 4060 . . 3  |-  ( Tr  A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
42, 3syl 17 . 2  |-  ( Ord 
A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
51, 4mtod 170 1  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    e. wcel 1621   Tr wtr 4053   Ord word 4328
This theorem is referenced by:  ordtri1  4362  ordnbtwn  4420  suc11  4433  smoord  6315  unblem1  7042  cantnfp1lem3  7315  cardprclem  7545
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-fr 4289  df-we 4291  df-ord 4332
  Copyright terms: Public domain W3C validator