MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordnbtwn Unicode version

Theorem ordnbtwn 4483
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordnbtwn  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )

Proof of Theorem ordnbtwn
StepHypRef Expression
1 ordn2lp 4412 . . 3  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
2 ordirr 4410 . . 3  |-  ( Ord 
A  ->  -.  A  e.  A )
3 ioran 478 . . 3  |-  ( -.  ( ( A  e.  B  /\  B  e.  A )  \/  A  e.  A )  <->  ( -.  ( A  e.  B  /\  B  e.  A
)  /\  -.  A  e.  A ) )
41, 2, 3sylanbrc 647 . 2  |-  ( Ord 
A  ->  -.  (
( A  e.  B  /\  B  e.  A
)  \/  A  e.  A ) )
5 elsuci 4458 . . . . 5  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
65anim2i 554 . . . 4  |-  ( ( A  e.  B  /\  B  e.  suc  A )  ->  ( A  e.  B  /\  ( B  e.  A  \/  B  =  A ) ) )
7 andi 839 . . . 4  |-  ( ( A  e.  B  /\  ( B  e.  A  \/  B  =  A
) )  <->  ( ( A  e.  B  /\  B  e.  A )  \/  ( A  e.  B  /\  B  =  A
) ) )
86, 7sylib 190 . . 3  |-  ( ( A  e.  B  /\  B  e.  suc  A )  ->  ( ( A  e.  B  /\  B  e.  A )  \/  ( A  e.  B  /\  B  =  A )
) )
9 eleq2 2346 . . . . 5  |-  ( B  =  A  ->  ( A  e.  B  <->  A  e.  A ) )
109biimpac 474 . . . 4  |-  ( ( A  e.  B  /\  B  =  A )  ->  A  e.  A )
1110orim2i 506 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  A
)  \/  ( A  e.  B  /\  B  =  A ) )  -> 
( ( A  e.  B  /\  B  e.  A )  \/  A  e.  A ) )
128, 11syl 17 . 2  |-  ( ( A  e.  B  /\  B  e.  suc  A )  ->  ( ( A  e.  B  /\  B  e.  A )  \/  A  e.  A ) )
134, 12nsyl 115 1  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685   Ord word 4391   suc csuc 4394
This theorem is referenced by:  onnbtwn  4484  ordsucss  4609
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4305  df-fr 4352  df-we 4354  df-ord 4395  df-suc 4398
  Copyright terms: Public domain W3C validator