MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri1 Unicode version

Theorem ordtri1 4441
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )

Proof of Theorem ordtri1
StepHypRef Expression
1 ordsseleq 4437 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B ) ) )
2 ordn2lp 4428 . . . . 5  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
3 imnan 411 . . . . 5  |-  ( ( A  e.  B  ->  -.  B  e.  A
)  <->  -.  ( A  e.  B  /\  B  e.  A ) )
42, 3sylibr 203 . . . 4  |-  ( Ord 
A  ->  ( A  e.  B  ->  -.  B  e.  A ) )
5 ordirr 4426 . . . . 5  |-  ( Ord 
B  ->  -.  B  e.  B )
6 eleq2 2357 . . . . . 6  |-  ( A  =  B  ->  ( B  e.  A  <->  B  e.  B ) )
76notbid 285 . . . . 5  |-  ( A  =  B  ->  ( -.  B  e.  A  <->  -.  B  e.  B ) )
85, 7syl5ibrcom 213 . . . 4  |-  ( Ord 
B  ->  ( A  =  B  ->  -.  B  e.  A ) )
94, 8jaao 495 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B )  ->  -.  B  e.  A
) )
10 ordtri3or 4440 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
11 df-3or 935 . . . . . 6  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( ( A  e.  B  \/  A  =  B
)  \/  B  e.  A ) )
1210, 11sylib 188 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B )  \/  B  e.  A
) )
1312orcomd 377 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  \/  ( A  e.  B  \/  A  =  B )
) )
1413ord 366 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B )
) )
159, 14impbid 183 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B )  <->  -.  B  e.  A ) )
161, 15bitrd 244 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1632    e. wcel 1696    C_ wss 3165   Ord word 4407
This theorem is referenced by:  ontri1  4442  ordtri2  4443  ordtri4  4445  ordtr3  4453  ordintdif  4457  ordtri2or  4504  ordsucss  4625  ordsucsssuc  4630  ordsucuniel  4631  limsssuc  4657  ssnlim  4690  smoword  6399  tfrlem15  6424  nnaword  6641  nnawordex  6651  onomeneq  7066  nndomo  7070  isfinite2  7131  unfilem1  7137  wofib  7276  cantnflem1  7407  alephgeom  7725  alephdom2  7730  cflim2  7905  fin67  8037  winainflem  8331  finminlem  26334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411
  Copyright terms: Public domain W3C validator