MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Unicode version

Theorem ordtri3or 4361
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 4359 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
2 ordirr 4347 . . . . . 6  |-  ( Ord  ( A  i^i  B
)  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
31, 2syl 17 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
4 ianor 476 . . . . . 6  |-  ( -.  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
5 elin 3300 . . . . . . 7  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( A  i^i  B )  e.  B ) )
6 incom 3303 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
76eleq1i 2319 . . . . . . . 8  |-  ( ( A  i^i  B )  e.  B  <->  ( B  i^i  A )  e.  B
)
87anbi2i 678 . . . . . . 7  |-  ( ( ( A  i^i  B
)  e.  A  /\  ( A  i^i  B )  e.  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
95, 8bitri 242 . . . . . 6  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
104, 9xchnxbir 302 . . . . 5  |-  ( -.  ( A  i^i  B
)  e.  ( A  i^i  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
113, 10sylib 190 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
12 inss1 3331 . . . . . . . . . 10  |-  ( A  i^i  B )  C_  A
13 ordsseleq 4358 . . . . . . . . . 10  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  C_  A 
<->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) ) )
1412, 13mpbii 204 . . . . . . . . 9  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
151, 14sylan 459 . . . . . . . 8  |-  ( ( ( Ord  A  /\  Ord  B )  /\  Ord  A )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1615anabss1 790 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1716ord 368 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  ( A  i^i  B )  =  A ) )
18 df-ss 3108 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1917, 18syl6ibr 220 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  A  C_  B ) )
20 ordin 4359 . . . . . . . . 9  |-  ( ( Ord  B  /\  Ord  A )  ->  Ord  ( B  i^i  A ) )
21 inss1 3331 . . . . . . . . . 10  |-  ( B  i^i  A )  C_  B
22 ordsseleq 4358 . . . . . . . . . 10  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  C_  B 
<->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) ) )
2321, 22mpbii 204 . . . . . . . . 9  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2420, 23sylan 459 . . . . . . . 8  |-  ( ( ( Ord  B  /\  Ord  A )  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2524anabss4 791 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2625ord 368 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  ( B  i^i  A )  =  B ) )
27 df-ss 3108 . . . . . 6  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
2826, 27syl6ibr 220 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  B  C_  A ) )
2919, 28orim12d 814 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( -.  ( A  i^i  B
)  e.  A  \/  -.  ( B  i^i  A
)  e.  B )  ->  ( A  C_  B  \/  B  C_  A
) ) )
3011, 29mpd 16 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  \/  B  C_  A ) )
31 sspsstri 3220 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
3230, 31sylib 190 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
33 ordelpss 4357 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  A  C.  B ) )
34 biidd 230 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  A  =  B
) )
35 ordelpss 4357 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  <->  B  C.  A ) )
3635ancoms 441 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  <->  B  C.  A ) )
3733, 34, 363orbi123d 1256 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) ) )
3832, 37mpbird 225 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 938    = wceq 1619    e. wcel 1621    i^i cin 3093    C_ wss 3094    C. wpss 3095   Ord word 4328
This theorem is referenced by:  ordtri1  4362  ordtri3  4365  ordon  4511  ordeleqon  4517  smo11  6314  smoord  6315  omopth2  6515  r111  7380  tcrank  7487  domtriomlem  8001  axdc3lem2  8010  zorn2lem6  8061  grur1  8375  poseq  23587  soseq  23588  celsor  24442
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332
  Copyright terms: Public domain W3C validator