MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Unicode version

Theorem ordtypelem2 7524
Description: Lemma for ordtype 7537. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem2  |-  ( ph  ->  Ord  T )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
2 ssrab2 3417 . . . . . . . . . 10  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  C_  On
31, 2eqsstri 3367 . . . . . . . . 9  |-  T  C_  On
43a1i 11 . . . . . . . 8  |-  ( ph  ->  T  C_  On )
54sselda 3337 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  On )
6 onss 4806 . . . . . . 7  |-  ( a  e.  On  ->  a  C_  On )
75, 6syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  On )
8 eloni 4626 . . . . . . . 8  |-  ( a  e.  On  ->  Ord  a )
95, 8syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  Ord  a )
10 imaeq2 5234 . . . . . . . . . . . 12  |-  ( x  =  a  ->  ( F " x )  =  ( F " a
) )
1110raleqdv 2917 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " a
) z R t ) )
1211rexbidv 2733 . . . . . . . . . 10  |-  ( x  =  a  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1312, 1elrab2 3103 . . . . . . . . 9  |-  ( a  e.  T  <->  ( a  e.  On  /\  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1413simprbi 452 . . . . . . . 8  |-  ( a  e.  T  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
1514adantl 454 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
16 ordelss 4632 . . . . . . . . 9  |-  ( ( Ord  a  /\  x  e.  a )  ->  x  C_  a )
17 imass2 5275 . . . . . . . . 9  |-  ( x 
C_  a  ->  ( F " x )  C_  ( F " a ) )
18 ssralv 3396 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( A. z  e.  ( F " a ) z R t  ->  A. z  e.  ( F " x
) z R t ) )
1918reximdv 2824 . . . . . . . . 9  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2016, 17, 193syl 19 . . . . . . . 8  |-  ( ( Ord  a  /\  x  e.  a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2120ralrimdva 2803 . . . . . . 7  |-  ( Ord  a  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
229, 15, 21sylc 59 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t )
23 ssrab 3410 . . . . . 6  |-  ( a 
C_  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  <->  ( a  C_  On  /\  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
247, 22, 23sylanbrc 647 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  a  C_ 
{ x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } )
2524, 1syl6sseqr 3384 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  T )
2625ralrimiva 2796 . . 3  |-  ( ph  ->  A. a  e.  T  a  C_  T )
27 dftr3 4337 . . 3  |-  ( Tr  T  <->  A. a  e.  T  a  C_  T )
2826, 27sylibr 205 . 2  |-  ( ph  ->  Tr  T )
29 ordon 4798 . . 3  |-  Ord  On
30 trssord 4633 . . 3  |-  ( ( Tr  T  /\  T  C_  On  /\  Ord  On )  ->  Ord  T )
313, 29, 30mp3an23 1272 . 2  |-  ( Tr  T  ->  Ord  T )
3228, 31syl 16 1  |-  ( ph  ->  Ord  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1654    e. wcel 1728   A.wral 2712   E.wrex 2713   {crab 2716   _Vcvv 2965    C_ wss 3309   class class class wbr 4243    e. cmpt 4297   Tr wtr 4333   Se wse 4574    We wwe 4575   Ord word 4615   Oncon0 4616   ran crn 4914   "cima 4916   iota_crio 6578  recscrecs 6668  OrdIsocoi 7514
This theorem is referenced by:  ordtypelem5  7527  ordtypelem6  7528  ordtypelem7  7529  ordtypelem8  7530  ordtypelem9  7531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-rab 2721  df-v 2967  df-sbc 3171  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-br 4244  df-opab 4298  df-tr 4334  df-eprel 4529  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-xp 4919  df-cnv 4921  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926
  Copyright terms: Public domain W3C validator