MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordun Unicode version

Theorem ordun 4674
Description: The maximum (i.e. union) of two ordinals is ordinal. Exercise 12 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordun  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  u.  B ) )

Proof of Theorem ordun
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( A  u.  B )  =  ( A  u.  B
)
2 ordequn 4673 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  u.  B )  =  ( A  u.  B )  ->  (
( A  u.  B
)  =  A  \/  ( A  u.  B
)  =  B ) ) )
31, 2mpi 17 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  u.  B )  =  A  \/  ( A  u.  B )  =  B ) )
4 ordeq 4580 . . . 4  |-  ( ( A  u.  B )  =  A  ->  ( Ord  ( A  u.  B
)  <->  Ord  A ) )
54biimprcd 217 . . 3  |-  ( Ord 
A  ->  ( ( A  u.  B )  =  A  ->  Ord  ( A  u.  B )
) )
6 ordeq 4580 . . . 4  |-  ( ( A  u.  B )  =  B  ->  ( Ord  ( A  u.  B
)  <->  Ord  B ) )
76biimprcd 217 . . 3  |-  ( Ord 
B  ->  ( ( A  u.  B )  =  B  ->  Ord  ( A  u.  B )
) )
85, 7jaao 496 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( (
( A  u.  B
)  =  A  \/  ( A  u.  B
)  =  B )  ->  Ord  ( A  u.  B ) ) )
93, 8mpd 15 1  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    u. cun 3310   Ord word 4572
This theorem is referenced by:  ordsucun  4796  r0weon  7883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576
  Copyright terms: Public domain W3C validator