MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Unicode version

Theorem ostth 21333
Description: Ostrowski's theorem, which classifies all absolute values on  QQ. Any such absolute value must either be the trivial absolute value  K, a constant exponent  0  <  a  <_  1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
Assertion
Ref Expression
ostth  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Distinct variable groups:    q, a, x, y    g, a, J, y    A, a, q, x, y    x, Q, y    F, a    g, q, F, y    x, F
Allowed substitution hints:    A( g)    Q( g, q, a)    J( x, q)    K( x, y, g, q, a)

Proof of Theorem ostth
Dummy variables  k  n  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
2 qabsabv.a . . . . . 6  |-  A  =  (AbsVal `  Q )
3 padic.j . . . . . 6  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4 ostth.k . . . . . 6  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
5 simpl 444 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  F  e.  A )
6 1re 9090 . . . . . . . . . . 11  |-  1  e.  RR
76ltnri 9182 . . . . . . . . . 10  |-  -.  1  <  1
8 ax-1ne0 9059 . . . . . . . . . . . 12  |-  1  =/=  0
91qrng1 21316 . . . . . . . . . . . . 13  |-  1  =  ( 1r `  Q )
101qrng0 21315 . . . . . . . . . . . . 13  |-  0  =  ( 0g `  Q )
112, 9, 10abv1z 15920 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
128, 11mpan2 653 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
1312breq2d 4224 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
1  <  ( F `  1 )  <->  1  <  1 ) )
147, 13mtbiri 295 . . . . . . . . 9  |-  ( F  e.  A  ->  -.  1  <  ( F ` 
1 ) )
1514adantr 452 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  1  <  ( F `  1
) )
16 simprr 734 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  1  <  ( F `  n ) )
17 fveq2 5728 . . . . . . . . . 10  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
1817breq2d 4224 . . . . . . . . 9  |-  ( n  =  1  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  1 ) ) )
1916, 18syl5ibcom 212 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  ->  1  <  ( F `  1
) ) )
2015, 19mtod 170 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  n  =  1 )
21 simprl 733 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  NN )
22 elnn1uz2 10552 . . . . . . . . 9  |-  ( n  e.  NN  <->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2321, 22sylib 189 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2423ord 367 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( -.  n  =  1  ->  n  e.  ( ZZ>= `  2
) ) )
2520, 24mpd 15 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  ( ZZ>= `  2 )
)
26 eqid 2436 . . . . . 6  |-  ( ( log `  ( F `
 n ) )  /  ( log `  n
) )  =  ( ( log `  ( F `  n )
)  /  ( log `  n ) )
271, 2, 3, 4, 5, 25, 16, 26ostth2 21331 . . . . 5  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) )
2827rexlimdvaa 2831 . . . 4  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) ) )
29 3mix2 1127 . . . 4  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
3028, 29syl6 31 . . 3  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
31 ralnex 2715 . . . 4  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  -.  E. n  e.  NN  1  <  ( F `  n )
)
32 simpll 731 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  F  e.  A )
33 simplr 732 . . . . . . . . . . 11  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
34 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3534breq2d 4224 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  k ) ) )
3635notbid 286 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  k
) ) )
3736cbvralv 2932 . . . . . . . . . . 11  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  A. k  e.  NN  -.  1  < 
( F `  k
) )
3833, 37sylib 189 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. k  e.  NN  -.  1  < 
( F `  k
) )
39 simprl 733 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  p  e.  Prime )
40 simprr 734 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  ( F `  p )  <  1 )
41 eqid 2436 . . . . . . . . . 10  |-  -u (
( log `  ( F `  p )
)  /  ( log `  p ) )  = 
-u ( ( log `  ( F `  p
) )  /  ( log `  p ) )
42 eqid 2436 . . . . . . . . . 10  |-  if ( ( F `  p
)  <_  ( F `  z ) ,  ( F `  z ) ,  ( F `  p ) )  =  if ( ( F `
 p )  <_ 
( F `  z
) ,  ( F `
 z ) ,  ( F `  p
) )
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 21332 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
4443expr 599 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  p  e.  Prime )  ->  ( ( F `
 p )  <  1  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
4544reximdva 2818 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
461, 2, 3padicabvf 21325 . . . . . . . . . . 11  |-  J : Prime --> A
47 ffn 5591 . . . . . . . . . . 11  |-  ( J : Prime --> A  ->  J  Fn  Prime )
48 fveq1 5727 . . . . . . . . . . . . . . 15  |-  ( g  =  ( J `  p )  ->  (
g `  y )  =  ( ( J `
 p ) `  y ) )
4948oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( g  =  ( J `  p )  ->  (
( g `  y
)  ^ c  a )  =  ( ( ( J `  p
) `  y )  ^ c  a )
)
5049mpteq2dv 4296 . . . . . . . . . . . . 13  |-  ( g  =  ( J `  p )  ->  (
y  e.  QQ  |->  ( ( g `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
5150eqeq2d 2447 . . . . . . . . . . . 12  |-  ( g  =  ( J `  p )  ->  ( F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  p
) `  y )  ^ c  a )
) ) )
5251rexrn 5872 . . . . . . . . . . 11  |-  ( J  Fn  Prime  ->  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) ) )
5346, 47, 52mp2b 10 . . . . . . . . . 10  |-  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5453rexbii 2730 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. a  e.  RR+  E. p  e. 
Prime  F  =  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
55 rexcom 2869 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5654, 55bitri 241 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
57 3mix3 1128 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
5856, 57sylbir 205 . . . . . . 7  |-  ( E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
5945, 58syl6 31 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
60 ralnex 2715 . . . . . . 7  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  -.  E. p  e.  Prime  ( F `  p )  <  1
)
61 simpl 444 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  e.  A )
62 simprl 733 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
6362, 37sylib 189 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  NN  -.  1  <  ( F `
 k ) )
64 simprr 734 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. p  e.  Prime  -.  ( F `  p
)  <  1 )
65 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( p  =  k  ->  ( F `  p )  =  ( F `  k ) )
6665breq1d 4222 . . . . . . . . . . . . 13  |-  ( p  =  k  ->  (
( F `  p
)  <  1  <->  ( F `  k )  <  1
) )
6766notbid 286 . . . . . . . . . . . 12  |-  ( p  =  k  ->  ( -.  ( F `  p
)  <  1  <->  -.  ( F `  k )  <  1 ) )
6867cbvralv 2932 . . . . . . . . . . 11  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
6964, 68sylib 189 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
701, 2, 3, 4, 61, 63, 69ostth1 21327 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  =  K )
71 3mix1 1126 . . . . . . . . 9  |-  ( F  =  K  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
7270, 71syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7372expr 599 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( A. p  e. 
Prime  -.  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7460, 73syl5bir 210 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( -.  E. p  e.  Prime  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7559, 74pm2.61d 152 . . . . 5  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7675ex 424 . . . 4  |-  ( F  e.  A  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7731, 76syl5bir 210 . . 3  |-  ( F  e.  A  ->  ( -.  E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
7830, 77pm2.61d 152 . 2  |-  ( F  e.  A  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
79 id 20 . . . 4  |-  ( F  =  K  ->  F  =  K )
801qdrng 21314 . . . . 5  |-  Q  e.  DivRing
811qrngbas 21313 . . . . . 6  |-  QQ  =  ( Base `  Q )
822, 81, 10, 4abvtriv 15929 . . . . 5  |-  ( Q  e.  DivRing  ->  K  e.  A
)
8380, 82ax-mp 8 . . . 4  |-  K  e.  A
8479, 83syl6eqel 2524 . . 3  |-  ( F  =  K  ->  F  e.  A )
851, 2qabsabv 21323 . . . . . 6  |-  ( abs  |`  QQ )  e.  A
86 fvres 5745 . . . . . . . . . 10  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
8786oveq1d 6096 . . . . . . . . 9  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  a )  =  ( ( abs `  y
)  ^ c  a ) )
8887mpteq2ia 4291 . . . . . . . 8  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )
8988eqcomi 2440 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )
902, 81, 89abvcxp 21309 . . . . . 6  |-  ( ( ( abs  |`  QQ )  e.  A  /\  a  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
9185, 90mpan 652 . . . . 5  |-  ( a  e.  ( 0 (,] 1 )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
92 eleq1 2496 . . . . 5  |-  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  e.  A  <->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
) )
9391, 92syl5ibrcom 214 . . . 4  |-  ( a  e.  ( 0 (,] 1 )  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
)
9493rexlimiv 2824 . . 3  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
951, 2, 3padicabvcxp 21326 . . . . . . 7  |-  ( ( p  e.  Prime  /\  a  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
9695ancoms 440 . . . . . 6  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
97 eleq1 2496 . . . . . 6  |-  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  ( F  e.  A  <->  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  e.  A ) )
9896, 97syl5ibrcom 214 . . . . 5  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  F  e.  A
) )
9998rexlimivv 2835 . . . 4  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  F  e.  A )
10054, 99sylbi 188 . . 3  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  ->  F  e.  A )
10184, 94, 1003jaoi 1247 . 2  |-  ( ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) )  ->  F  e.  A )
10278, 101impbii 181 1  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   ifcif 3739   class class class wbr 4212    e. cmpt 4266   ran crn 4879    |` cres 4880    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   0cc0 8990   1c1 8991    < clt 9120    <_ cle 9121   -ucneg 9292    / cdiv 9677   NNcn 10000   2c2 10049   ZZ>=cuz 10488   QQcq 10574   RR+crp 10612   (,]cioc 10917   ^cexp 11382   abscabs 12039   Primecprime 13079    pCnt cpc 13210   ↾s cress 13470   DivRingcdr 15835  AbsValcabv 15904  ℂfldccnfld 16703   logclog 20452    ^ c ccxp 20453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-grp 14812  df-minusg 14813  df-mulg 14815  df-subg 14941  df-cntz 15116  df-cmn 15414  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-drng 15837  df-subrg 15866  df-abv 15905  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455
  Copyright terms: Public domain W3C validator