MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Unicode version

Theorem ostth 20804
Description: Ostrowski's theorem, which classifies all absolute values on  QQ. Any such absolute value must either be the trivial absolute value  K, a constant exponent  0  <  a  <_  1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
Assertion
Ref Expression
ostth  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Distinct variable groups:    q, a, x, y    g, a, J, y    A, a, q, x, y    x, Q, y    F, a    g, q, F, y    x, F
Allowed substitution hints:    A( g)    Q( g, q, a)    J( x, q)    K( x, y, g, q, a)

Proof of Theorem ostth
Dummy variables  k  n  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . . 7  |-  Q  =  (flds  QQ )
2 qabsabv.a . . . . . . 7  |-  A  =  (AbsVal `  Q )
3 padic.j . . . . . . 7  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4 ostth.k . . . . . . 7  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
5 simpl 443 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  F  e.  A )
6 1re 8853 . . . . . . . . . . . 12  |-  1  e.  RR
76ltnri 8945 . . . . . . . . . . 11  |-  -.  1  <  1
8 ax-1ne0 8822 . . . . . . . . . . . . 13  |-  1  =/=  0
91qrng1 20787 . . . . . . . . . . . . . 14  |-  1  =  ( 1r `  Q )
101qrng0 20786 . . . . . . . . . . . . . 14  |-  0  =  ( 0g `  Q )
112, 9, 10abv1z 15613 . . . . . . . . . . . . 13  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
128, 11mpan2 652 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
1312breq2d 4051 . . . . . . . . . . 11  |-  ( F  e.  A  ->  (
1  <  ( F `  1 )  <->  1  <  1 ) )
147, 13mtbiri 294 . . . . . . . . . 10  |-  ( F  e.  A  ->  -.  1  <  ( F ` 
1 ) )
1514adantr 451 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  1  <  ( F `  1
) )
16 simprr 733 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  1  <  ( F `  n ) )
17 fveq2 5541 . . . . . . . . . . 11  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
1817breq2d 4051 . . . . . . . . . 10  |-  ( n  =  1  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  1 ) ) )
1916, 18syl5ibcom 211 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  ->  1  <  ( F `  1
) ) )
2015, 19mtod 168 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  n  =  1 )
21 simprl 732 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  NN )
22 elnn1uz2 10310 . . . . . . . . . 10  |-  ( n  e.  NN  <->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2321, 22sylib 188 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2423ord 366 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( -.  n  =  1  ->  n  e.  ( ZZ>= `  2
) ) )
2520, 24mpd 14 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  ( ZZ>= `  2 )
)
26 eqid 2296 . . . . . . 7  |-  ( ( log `  ( F `
 n ) )  /  ( log `  n
) )  =  ( ( log `  ( F `  n )
)  /  ( log `  n ) )
271, 2, 3, 4, 5, 25, 16, 26ostth2 20802 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) )
2827expr 598 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN )  ->  ( 1  <  ( F `  n )  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) ) )
2928rexlimdva 2680 . . . 4  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) ) )
30 3mix2 1125 . . . 4  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
3129, 30syl6 29 . . 3  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
32 ralnex 2566 . . . 4  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  -.  E. n  e.  NN  1  <  ( F `  n )
)
33 simpll 730 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  F  e.  A )
34 simplr 731 . . . . . . . . . . 11  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
35 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3635breq2d 4051 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  k ) ) )
3736notbid 285 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  k
) ) )
3837cbvralv 2777 . . . . . . . . . . 11  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  A. k  e.  NN  -.  1  < 
( F `  k
) )
3934, 38sylib 188 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. k  e.  NN  -.  1  < 
( F `  k
) )
40 simprl 732 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  p  e.  Prime )
41 simprr 733 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  ( F `  p )  <  1 )
42 eqid 2296 . . . . . . . . . 10  |-  -u (
( log `  ( F `  p )
)  /  ( log `  p ) )  = 
-u ( ( log `  ( F `  p
) )  /  ( log `  p ) )
43 eqid 2296 . . . . . . . . . 10  |-  if ( ( F `  p
)  <_  ( F `  z ) ,  ( F `  z ) ,  ( F `  p ) )  =  if ( ( F `
 p )  <_ 
( F `  z
) ,  ( F `
 z ) ,  ( F `  p
) )
441, 2, 3, 4, 33, 39, 40, 41, 42, 43ostth3 20803 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
4544expr 598 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  p  e.  Prime )  ->  ( ( F `
 p )  <  1  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
4645reximdva 2668 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
471, 2, 3padicabvf 20796 . . . . . . . . . . 11  |-  J : Prime --> A
48 ffn 5405 . . . . . . . . . . 11  |-  ( J : Prime --> A  ->  J  Fn  Prime )
49 fveq1 5540 . . . . . . . . . . . . . . 15  |-  ( g  =  ( J `  p )  ->  (
g `  y )  =  ( ( J `
 p ) `  y ) )
5049oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( g  =  ( J `  p )  ->  (
( g `  y
)  ^ c  a )  =  ( ( ( J `  p
) `  y )  ^ c  a )
)
5150mpteq2dv 4123 . . . . . . . . . . . . 13  |-  ( g  =  ( J `  p )  ->  (
y  e.  QQ  |->  ( ( g `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
5251eqeq2d 2307 . . . . . . . . . . . 12  |-  ( g  =  ( J `  p )  ->  ( F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  p
) `  y )  ^ c  a )
) ) )
5352rexrn 5683 . . . . . . . . . . 11  |-  ( J  Fn  Prime  ->  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) ) )
5447, 48, 53mp2b 9 . . . . . . . . . 10  |-  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5554rexbii 2581 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. a  e.  RR+  E. p  e. 
Prime  F  =  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
56 rexcom 2714 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5755, 56bitri 240 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
58 3mix3 1126 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
5957, 58sylbir 204 . . . . . . 7  |-  ( E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
6046, 59syl6 29 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
61 ralnex 2566 . . . . . . 7  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  -.  E. p  e.  Prime  ( F `  p )  <  1
)
62 simpl 443 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  e.  A )
63 simprl 732 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
6463, 38sylib 188 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  NN  -.  1  <  ( F `
 k ) )
65 simprr 733 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. p  e.  Prime  -.  ( F `  p
)  <  1 )
66 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( p  =  k  ->  ( F `  p )  =  ( F `  k ) )
6766breq1d 4049 . . . . . . . . . . . . 13  |-  ( p  =  k  ->  (
( F `  p
)  <  1  <->  ( F `  k )  <  1
) )
6867notbid 285 . . . . . . . . . . . 12  |-  ( p  =  k  ->  ( -.  ( F `  p
)  <  1  <->  -.  ( F `  k )  <  1 ) )
6968cbvralv 2777 . . . . . . . . . . 11  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
7065, 69sylib 188 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
711, 2, 3, 4, 62, 64, 70ostth1 20798 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  =  K )
72 3mix1 1124 . . . . . . . . 9  |-  ( F  =  K  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
7371, 72syl 15 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7473expr 598 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( A. p  e. 
Prime  -.  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7561, 74syl5bir 209 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( -.  E. p  e.  Prime  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7660, 75pm2.61d 150 . . . . 5  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7776ex 423 . . . 4  |-  ( F  e.  A  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7832, 77syl5bir 209 . . 3  |-  ( F  e.  A  ->  ( -.  E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
7931, 78pm2.61d 150 . 2  |-  ( F  e.  A  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
80 id 19 . . . 4  |-  ( F  =  K  ->  F  =  K )
811qdrng 20785 . . . . 5  |-  Q  e.  DivRing
821qrngbas 20784 . . . . . 6  |-  QQ  =  ( Base `  Q )
832, 82, 10, 4abvtriv 15622 . . . . 5  |-  ( Q  e.  DivRing  ->  K  e.  A
)
8481, 83ax-mp 8 . . . 4  |-  K  e.  A
8580, 84syl6eqel 2384 . . 3  |-  ( F  =  K  ->  F  e.  A )
861, 2qabsabv 20794 . . . . . 6  |-  ( abs  |`  QQ )  e.  A
87 fvres 5558 . . . . . . . . . 10  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
8887oveq1d 5889 . . . . . . . . 9  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  a )  =  ( ( abs `  y
)  ^ c  a ) )
8988mpteq2ia 4118 . . . . . . . 8  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )
9089eqcomi 2300 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )
912, 82, 90abvcxp 20780 . . . . . 6  |-  ( ( ( abs  |`  QQ )  e.  A  /\  a  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
9286, 91mpan 651 . . . . 5  |-  ( a  e.  ( 0 (,] 1 )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
93 eleq1 2356 . . . . 5  |-  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  e.  A  <->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
) )
9492, 93syl5ibrcom 213 . . . 4  |-  ( a  e.  ( 0 (,] 1 )  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
)
9594rexlimiv 2674 . . 3  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
961, 2, 3padicabvcxp 20797 . . . . . . 7  |-  ( ( p  e.  Prime  /\  a  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
9796ancoms 439 . . . . . 6  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
98 eleq1 2356 . . . . . 6  |-  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  ( F  e.  A  <->  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  e.  A ) )
9997, 98syl5ibrcom 213 . . . . 5  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  F  e.  A
) )
10099rexlimivv 2685 . . . 4  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  F  e.  A )
10155, 100sylbi 187 . . 3  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  ->  F  e.  A )
10285, 95, 1013jaoi 1245 . 2  |-  ( ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) )  ->  F  e.  A )
10379, 102impbii 180 1  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   ifcif 3578   class class class wbr 4039    e. cmpt 4093   ran crn 4706    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   ZZ>=cuz 10246   QQcq 10332   RR+crp 10370   (,]cioc 10673   ^cexp 11120   abscabs 11735   Primecprime 12774    pCnt cpc 12905   ↾s cress 13165   DivRingcdr 15528  AbsValcabv 15597  ℂfldccnfld 16393   logclog 19928    ^ c ccxp 19929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-mulg 14508  df-subg 14634  df-cntz 14809  df-cmn 15107  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-subrg 15559  df-abv 15598  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator