MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Unicode version

Theorem ostth 21201
Description: Ostrowski's theorem, which classifies all absolute values on  QQ. Any such absolute value must either be the trivial absolute value  K, a constant exponent  0  <  a  <_  1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
Assertion
Ref Expression
ostth  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Distinct variable groups:    q, a, x, y    g, a, J, y    A, a, q, x, y    x, Q, y    F, a    g, q, F, y    x, F
Allowed substitution hints:    A( g)    Q( g, q, a)    J( x, q)    K( x, y, g, q, a)

Proof of Theorem ostth
Dummy variables  k  n  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
2 qabsabv.a . . . . . 6  |-  A  =  (AbsVal `  Q )
3 padic.j . . . . . 6  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4 ostth.k . . . . . 6  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
5 simpl 444 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  F  e.  A )
6 1re 9024 . . . . . . . . . . 11  |-  1  e.  RR
76ltnri 9116 . . . . . . . . . 10  |-  -.  1  <  1
8 ax-1ne0 8993 . . . . . . . . . . . 12  |-  1  =/=  0
91qrng1 21184 . . . . . . . . . . . . 13  |-  1  =  ( 1r `  Q )
101qrng0 21183 . . . . . . . . . . . . 13  |-  0  =  ( 0g `  Q )
112, 9, 10abv1z 15848 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
128, 11mpan2 653 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
1312breq2d 4166 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
1  <  ( F `  1 )  <->  1  <  1 ) )
147, 13mtbiri 295 . . . . . . . . 9  |-  ( F  e.  A  ->  -.  1  <  ( F ` 
1 ) )
1514adantr 452 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  1  <  ( F `  1
) )
16 simprr 734 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  1  <  ( F `  n ) )
17 fveq2 5669 . . . . . . . . . 10  |-  ( n  =  1  ->  ( F `  n )  =  ( F ` 
1 ) )
1817breq2d 4166 . . . . . . . . 9  |-  ( n  =  1  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  1 ) ) )
1916, 18syl5ibcom 212 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  ->  1  <  ( F `  1
) ) )
2015, 19mtod 170 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  -.  n  =  1 )
21 simprl 733 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  NN )
22 elnn1uz2 10485 . . . . . . . . 9  |-  ( n  e.  NN  <->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2321, 22sylib 189 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( n  =  1  \/  n  e.  ( ZZ>= `  2 )
) )
2423ord 367 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  ( -.  n  =  1  ->  n  e.  ( ZZ>= `  2
) ) )
2520, 24mpd 15 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  n  e.  ( ZZ>= `  2 )
)
26 eqid 2388 . . . . . 6  |-  ( ( log `  ( F `
 n ) )  /  ( log `  n
) )  =  ( ( log `  ( F `  n )
)  /  ( log `  n ) )
271, 2, 3, 4, 5, 25, 16, 26ostth2 21199 . . . . 5  |-  ( ( F  e.  A  /\  ( n  e.  NN  /\  1  <  ( F `
 n ) ) )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) )
2827rexlimdvaa 2775 . . . 4  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) ) ) )
29 3mix2 1127 . . . 4  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
3028, 29syl6 31 . . 3  |-  ( F  e.  A  ->  ( E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
31 ralnex 2660 . . . 4  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  -.  E. n  e.  NN  1  <  ( F `  n )
)
32 simpll 731 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  F  e.  A )
33 simplr 732 . . . . . . . . . . 11  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
34 fveq2 5669 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3534breq2d 4166 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  k ) ) )
3635notbid 286 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  k
) ) )
3736cbvralv 2876 . . . . . . . . . . 11  |-  ( A. n  e.  NN  -.  1  <  ( F `  n )  <->  A. k  e.  NN  -.  1  < 
( F `  k
) )
3833, 37sylib 189 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  A. k  e.  NN  -.  1  < 
( F `  k
) )
39 simprl 733 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  p  e.  Prime )
40 simprr 734 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  ( F `  p )  <  1 )
41 eqid 2388 . . . . . . . . . 10  |-  -u (
( log `  ( F `  p )
)  /  ( log `  p ) )  = 
-u ( ( log `  ( F `  p
) )  /  ( log `  p ) )
42 eqid 2388 . . . . . . . . . 10  |-  if ( ( F `  p
)  <_  ( F `  z ) ,  ( F `  z ) ,  ( F `  p ) )  =  if ( ( F `
 p )  <_ 
( F `  z
) ,  ( F `
 z ) ,  ( F `  p
) )
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 21200 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  ( p  e. 
Prime  /\  ( F `  p )  <  1
) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
4443expr 599 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `
 n ) )  /\  p  e.  Prime )  ->  ( ( F `
 p )  <  1  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
4544reximdva 2762 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) ) )
461, 2, 3padicabvf 21193 . . . . . . . . . . 11  |-  J : Prime --> A
47 ffn 5532 . . . . . . . . . . 11  |-  ( J : Prime --> A  ->  J  Fn  Prime )
48 fveq1 5668 . . . . . . . . . . . . . . 15  |-  ( g  =  ( J `  p )  ->  (
g `  y )  =  ( ( J `
 p ) `  y ) )
4948oveq1d 6036 . . . . . . . . . . . . . 14  |-  ( g  =  ( J `  p )  ->  (
( g `  y
)  ^ c  a )  =  ( ( ( J `  p
) `  y )  ^ c  a )
)
5049mpteq2dv 4238 . . . . . . . . . . . . 13  |-  ( g  =  ( J `  p )  ->  (
y  e.  QQ  |->  ( ( g `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
5150eqeq2d 2399 . . . . . . . . . . . 12  |-  ( g  =  ( J `  p )  ->  ( F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  p
) `  y )  ^ c  a )
) ) )
5251rexrn 5812 . . . . . . . . . . 11  |-  ( J  Fn  Prime  ->  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) ) )
5346, 47, 52mp2b 10 . . . . . . . . . 10  |-  ( E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) )  <->  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5453rexbii 2675 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. a  e.  RR+  E. p  e. 
Prime  F  =  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) ) )
55 rexcom 2813 . . . . . . . . 9  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
5654, 55bitri 241 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  <->  E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) ) )
57 3mix3 1128 . . . . . . . 8  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
5856, 57sylbir 205 . . . . . . 7  |-  ( E. p  e.  Prime  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
5945, 58syl6 31 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( E. p  e. 
Prime  ( F `  p
)  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
60 ralnex 2660 . . . . . . 7  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  -.  E. p  e.  Prime  ( F `  p )  <  1
)
61 simpl 444 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  e.  A )
62 simprl 733 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
6362, 37sylib 189 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  NN  -.  1  <  ( F `
 k ) )
64 simprr 734 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. p  e.  Prime  -.  ( F `  p
)  <  1 )
65 fveq2 5669 . . . . . . . . . . . . . 14  |-  ( p  =  k  ->  ( F `  p )  =  ( F `  k ) )
6665breq1d 4164 . . . . . . . . . . . . 13  |-  ( p  =  k  ->  (
( F `  p
)  <  1  <->  ( F `  k )  <  1
) )
6766notbid 286 . . . . . . . . . . . 12  |-  ( p  =  k  ->  ( -.  ( F `  p
)  <  1  <->  -.  ( F `  k )  <  1 ) )
6867cbvralv 2876 . . . . . . . . . . 11  |-  ( A. p  e.  Prime  -.  ( F `  p )  <  1  <->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
6964, 68sylib 189 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  A. k  e.  Prime  -.  ( F `  k
)  <  1 )
701, 2, 3, 4, 61, 63, 69ostth1 21195 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  ->  F  =  K )
71 3mix1 1126 . . . . . . . . 9  |-  ( F  =  K  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
7270, 71syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( A. n  e.  NN  -.  1  <  ( F `
 n )  /\  A. p  e.  Prime  -.  ( F `  p )  <  1 ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7372expr 599 . . . . . . 7  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( A. p  e. 
Prime  -.  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7460, 73syl5bir 210 . . . . . 6  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( -.  E. p  e.  Prime  ( F `  p )  <  1  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7559, 74pm2.61d 152 . . . . 5  |-  ( ( F  e.  A  /\  A. n  e.  NN  -.  1  <  ( F `  n ) )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
7675ex 424 . . . 4  |-  ( F  e.  A  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  -> 
( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) ) )
7731, 76syl5bir 210 . . 3  |-  ( F  e.  A  ->  ( -.  E. n  e.  NN  1  <  ( F `  n )  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) ) )
7830, 77pm2.61d 152 . 2  |-  ( F  e.  A  ->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) ) )
79 id 20 . . . 4  |-  ( F  =  K  ->  F  =  K )
801qdrng 21182 . . . . 5  |-  Q  e.  DivRing
811qrngbas 21181 . . . . . 6  |-  QQ  =  ( Base `  Q )
822, 81, 10, 4abvtriv 15857 . . . . 5  |-  ( Q  e.  DivRing  ->  K  e.  A
)
8380, 82ax-mp 8 . . . 4  |-  K  e.  A
8479, 83syl6eqel 2476 . . 3  |-  ( F  =  K  ->  F  e.  A )
851, 2qabsabv 21191 . . . . . 6  |-  ( abs  |`  QQ )  e.  A
86 fvres 5686 . . . . . . . . . 10  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
8786oveq1d 6036 . . . . . . . . 9  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  a )  =  ( ( abs `  y
)  ^ c  a ) )
8887mpteq2ia 4233 . . . . . . . 8  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )
8988eqcomi 2392 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  a ) )
902, 81, 89abvcxp 21177 . . . . . 6  |-  ( ( ( abs  |`  QQ )  e.  A  /\  a  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
9185, 90mpan 652 . . . . 5  |-  ( a  e.  ( 0 (,] 1 )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
)
92 eleq1 2448 . . . . 5  |-  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  -> 
( F  e.  A  <->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  e.  A
) )
9391, 92syl5ibrcom 214 . . . 4  |-  ( a  e.  ( 0 (,] 1 )  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
)
9493rexlimiv 2768 . . 3  |-  ( E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  ->  F  e.  A )
951, 2, 3padicabvcxp 21194 . . . . . . 7  |-  ( ( p  e.  Prime  /\  a  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
9695ancoms 440 . . . . . 6  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  (
y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  e.  A
)
97 eleq1 2448 . . . . . 6  |-  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  ( F  e.  A  <->  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  e.  A ) )
9896, 97syl5ibrcom 214 . . . . 5  |-  ( ( a  e.  RR+  /\  p  e.  Prime )  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `
 y )  ^ c  a ) )  ->  F  e.  A
) )
9998rexlimivv 2779 . . . 4  |-  ( E. a  e.  RR+  E. p  e.  Prime  F  =  ( y  e.  QQ  |->  ( ( ( J `  p ) `  y
)  ^ c  a ) )  ->  F  e.  A )
10054, 99sylbi 188 . . 3  |-  ( E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) )  ->  F  e.  A )
10184, 94, 1003jaoi 1247 . 2  |-  ( ( F  =  K  \/  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  \/ 
E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `
 y )  ^ c  a ) ) )  ->  F  e.  A )
10278, 101impbii 181 1  |-  ( F  e.  A  <->  ( F  =  K  \/  E. a  e.  ( 0 (,] 1
) F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  \/  E. a  e.  RR+  E. g  e.  ran  J  F  =  ( y  e.  QQ  |->  ( ( g `  y )  ^ c 
a ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   ifcif 3683   class class class wbr 4154    e. cmpt 4208   ran crn 4820    |` cres 4821    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   0cc0 8924   1c1 8925    < clt 9054    <_ cle 9055   -ucneg 9225    / cdiv 9610   NNcn 9933   2c2 9982   ZZ>=cuz 10421   QQcq 10507   RR+crp 10545   (,]cioc 10850   ^cexp 11310   abscabs 11967   Primecprime 13007    pCnt cpc 13138   ↾s cress 13398   DivRingcdr 15763  AbsValcabv 15832  ℂfldccnfld 16627   logclog 20320    ^ c ccxp 20321
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-tpos 6416  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-gcd 12935  df-prm 13008  df-pc 13139  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-grp 14740  df-minusg 14741  df-mulg 14743  df-subg 14869  df-cntz 15044  df-cmn 15342  df-mgp 15577  df-rng 15591  df-cring 15592  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-invr 15705  df-dvr 15716  df-drng 15765  df-subrg 15794  df-abv 15833  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cxp 20323
  Copyright terms: Public domain W3C validator