MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth1 Unicode version

Theorem ostth1 20782
Description: - Lemma for ostth 20788: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If  F is equal to  1 on the primes, then by complete induction and the multiplicative property abvmul 15594 of the absolute value,  F is equal to  1 on all the integers, and ostthlem1 20776 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth1.2  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
ostth1.3  |-  ( ph  ->  A. n  e.  Prime  -.  ( F `  n
)  <  1 )
Assertion
Ref Expression
ostth1  |-  ( ph  ->  F  =  K )
Distinct variable groups:    n, K    x, n, q, ph    A, n, q, x    Q, n, x    n, F, q, x
Allowed substitution hints:    Q( q)    J( x, n, q)    K( x, q)

Proof of Theorem ostth1
StepHypRef Expression
1 qrng.q . 2  |-  Q  =  (flds  QQ )
2 qabsabv.a . 2  |-  A  =  (AbsVal `  Q )
3 ostth.1 . 2  |-  ( ph  ->  F  e.  A )
41qdrng 20769 . . 3  |-  Q  e.  DivRing
51qrngbas 20768 . . . 4  |-  QQ  =  ( Base `  Q )
61qrng0 20770 . . . 4  |-  0  =  ( 0g `  Q )
7 ostth.k . . . 4  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
82, 5, 6, 7abvtriv 15606 . . 3  |-  ( Q  e.  DivRing  ->  K  e.  A
)
94, 8mp1i 11 . 2  |-  ( ph  ->  K  e.  A )
10 ostth1.3 . . . . 5  |-  ( ph  ->  A. n  e.  Prime  -.  ( F `  n
)  <  1 )
1110r19.21bi 2641 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  -.  ( F `  n )  <  1 )
12 prmnn 12761 . . . . 5  |-  ( n  e.  Prime  ->  n  e.  NN )
13 ostth1.2 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
1413r19.21bi 2641 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  -.  1  <  ( F `  n
) )
1512, 14sylan2 460 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  -.  1  <  ( F `  n
) )
16 nnq 10329 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  QQ )
1712, 16syl 15 . . . . . 6  |-  ( n  e.  Prime  ->  n  e.  QQ )
182, 5abvcl 15589 . . . . . 6  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
193, 17, 18syl2an 463 . . . . 5  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  e.  RR )
20 1re 8837 . . . . 5  |-  1  e.  RR
21 lttri3 8905 . . . . 5  |-  ( ( ( F `  n
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  n )  =  1  <-> 
( -.  ( F `
 n )  <  1  /\  -.  1  <  ( F `  n
) ) ) )
2219, 20, 21sylancl 643 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  ( ( F `  n )  =  1  <->  ( -.  ( F `  n )  <  1  /\  -.  1  <  ( F `  n ) ) ) )
2311, 15, 22mpbir2and 888 . . 3  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  =  1 )
2412adantl 452 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  n  e.  NN )
25 eqeq1 2289 . . . . . . . 8  |-  ( x  =  n  ->  (
x  =  0  <->  n  =  0 ) )
2625ifbid 3583 . . . . . . 7  |-  ( x  =  n  ->  if ( x  =  0 ,  0 ,  1 )  =  if ( n  =  0 ,  0 ,  1 ) )
27 c0ex 8832 . . . . . . . 8  |-  0  e.  _V
28 1ex 8833 . . . . . . . 8  |-  1  e.  _V
2927, 28ifex 3623 . . . . . . 7  |-  if ( n  =  0 ,  0 ,  1 )  e.  _V
3026, 7, 29fvmpt 5602 . . . . . 6  |-  ( n  e.  QQ  ->  ( K `  n )  =  if ( n  =  0 ,  0 ,  1 ) )
3116, 30syl 15 . . . . 5  |-  ( n  e.  NN  ->  ( K `  n )  =  if ( n  =  0 ,  0 ,  1 ) )
32 nnne0 9778 . . . . . . 7  |-  ( n  e.  NN  ->  n  =/=  0 )
3332neneqd 2462 . . . . . 6  |-  ( n  e.  NN  ->  -.  n  =  0 )
34 iffalse 3572 . . . . . 6  |-  ( -.  n  =  0  ->  if ( n  =  0 ,  0 ,  1 )  =  1 )
3533, 34syl 15 . . . . 5  |-  ( n  e.  NN  ->  if ( n  =  0 ,  0 ,  1 )  =  1 )
3631, 35eqtrd 2315 . . . 4  |-  ( n  e.  NN  ->  ( K `  n )  =  1 )
3724, 36syl 15 . . 3  |-  ( (
ph  /\  n  e.  Prime )  ->  ( K `  n )  =  1 )
3823, 37eqtr4d 2318 . 2  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  =  ( K `  n ) )
391, 2, 3, 9, 38ostthlem2 20777 1  |-  ( ph  ->  F  =  K )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867   -ucneg 9038   NNcn 9746   QQcq 10316   ^cexp 11104   Primecprime 12758    pCnt cpc 12889   ↾s cress 13149   DivRingcdr 15512  AbsValcabv 15581  ℂfldccnfld 16377
This theorem is referenced by:  ostth  20788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-ico 10662  df-fz 10783  df-seq 11047  df-exp 11105  df-dvds 12532  df-prm 12759  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-subg 14618  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-subrg 15543  df-abv 15582  df-cnfld 16378
  Copyright terms: Public domain W3C validator