MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth1 Structured version   Unicode version

Theorem ostth1 21327
Description: - Lemma for ostth 21333: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If  F is equal to  1 on the primes, then by complete induction and the multiplicative property abvmul 15917 of the absolute value,  F is equal to  1 on all the integers, and ostthlem1 21321 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth1.2  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
ostth1.3  |-  ( ph  ->  A. n  e.  Prime  -.  ( F `  n
)  <  1 )
Assertion
Ref Expression
ostth1  |-  ( ph  ->  F  =  K )
Distinct variable groups:    n, K    x, n, q, ph    A, n, q, x    Q, n, x    n, F, q, x
Allowed substitution hints:    Q( q)    J( x, n, q)    K( x, q)

Proof of Theorem ostth1
StepHypRef Expression
1 qrng.q . 2  |-  Q  =  (flds  QQ )
2 qabsabv.a . 2  |-  A  =  (AbsVal `  Q )
3 ostth.1 . 2  |-  ( ph  ->  F  e.  A )
41qdrng 21314 . . 3  |-  Q  e.  DivRing
51qrngbas 21313 . . . 4  |-  QQ  =  ( Base `  Q )
61qrng0 21315 . . . 4  |-  0  =  ( 0g `  Q )
7 ostth.k . . . 4  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
82, 5, 6, 7abvtriv 15929 . . 3  |-  ( Q  e.  DivRing  ->  K  e.  A
)
94, 8mp1i 12 . 2  |-  ( ph  ->  K  e.  A )
10 ostth1.3 . . . . 5  |-  ( ph  ->  A. n  e.  Prime  -.  ( F `  n
)  <  1 )
1110r19.21bi 2804 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  -.  ( F `  n )  <  1 )
12 prmnn 13082 . . . . 5  |-  ( n  e.  Prime  ->  n  e.  NN )
13 ostth1.2 . . . . . 6  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
1413r19.21bi 2804 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  -.  1  <  ( F `  n
) )
1512, 14sylan2 461 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  -.  1  <  ( F `  n
) )
16 nnq 10587 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  QQ )
1712, 16syl 16 . . . . . 6  |-  ( n  e.  Prime  ->  n  e.  QQ )
182, 5abvcl 15912 . . . . . 6  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
193, 17, 18syl2an 464 . . . . 5  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  e.  RR )
20 1re 9090 . . . . 5  |-  1  e.  RR
21 lttri3 9158 . . . . 5  |-  ( ( ( F `  n
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  n )  =  1  <-> 
( -.  ( F `
 n )  <  1  /\  -.  1  <  ( F `  n
) ) ) )
2219, 20, 21sylancl 644 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  ( ( F `  n )  =  1  <->  ( -.  ( F `  n )  <  1  /\  -.  1  <  ( F `  n ) ) ) )
2311, 15, 22mpbir2and 889 . . 3  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  =  1 )
2412adantl 453 . . . 4  |-  ( (
ph  /\  n  e.  Prime )  ->  n  e.  NN )
25 eqeq1 2442 . . . . . . . 8  |-  ( x  =  n  ->  (
x  =  0  <->  n  =  0 ) )
2625ifbid 3757 . . . . . . 7  |-  ( x  =  n  ->  if ( x  =  0 ,  0 ,  1 )  =  if ( n  =  0 ,  0 ,  1 ) )
27 c0ex 9085 . . . . . . . 8  |-  0  e.  _V
28 1ex 9086 . . . . . . . 8  |-  1  e.  _V
2927, 28ifex 3797 . . . . . . 7  |-  if ( n  =  0 ,  0 ,  1 )  e.  _V
3026, 7, 29fvmpt 5806 . . . . . 6  |-  ( n  e.  QQ  ->  ( K `  n )  =  if ( n  =  0 ,  0 ,  1 ) )
3116, 30syl 16 . . . . 5  |-  ( n  e.  NN  ->  ( K `  n )  =  if ( n  =  0 ,  0 ,  1 ) )
32 nnne0 10032 . . . . . . 7  |-  ( n  e.  NN  ->  n  =/=  0 )
3332neneqd 2617 . . . . . 6  |-  ( n  e.  NN  ->  -.  n  =  0 )
34 iffalse 3746 . . . . . 6  |-  ( -.  n  =  0  ->  if ( n  =  0 ,  0 ,  1 )  =  1 )
3533, 34syl 16 . . . . 5  |-  ( n  e.  NN  ->  if ( n  =  0 ,  0 ,  1 )  =  1 )
3631, 35eqtrd 2468 . . . 4  |-  ( n  e.  NN  ->  ( K `  n )  =  1 )
3724, 36syl 16 . . 3  |-  ( (
ph  /\  n  e.  Prime )  ->  ( K `  n )  =  1 )
3823, 37eqtr4d 2471 . 2  |-  ( (
ph  /\  n  e.  Prime )  ->  ( F `  n )  =  ( K `  n ) )
391, 2, 3, 9, 38ostthlem2 21322 1  |-  ( ph  ->  F  =  K )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   ifcif 3739   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    < clt 9120   -ucneg 9292   NNcn 10000   QQcq 10574   ^cexp 11382   Primecprime 13079    pCnt cpc 13210   ↾s cress 13470   DivRingcdr 15835  AbsValcabv 15904  ℂfldccnfld 16703
This theorem is referenced by:  ostth  21333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-ico 10922  df-fz 11044  df-seq 11324  df-exp 11383  df-dvds 12853  df-prm 13080  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-subg 14941  df-cmn 15414  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-drng 15837  df-subrg 15866  df-abv 15905  df-cnfld 16704
  Copyright terms: Public domain W3C validator