MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Unicode version

Theorem ostth2 21199
Description: - Lemma for ostth 21201: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth2.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
ostth2.3  |-  ( ph  ->  1  <  ( F `
 N ) )
ostth2.4  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
Assertion
Ref Expression
ostth2  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Distinct variable groups:    q, a, x, y, ph    J, a, y    A, a, q, x, y   
x, N, y    x, Q, y    F, a, q, y    R, a, q, y   
x, F
Allowed substitution hints:    Q( q, a)    R( x)    J( x, q)    K( x, y, q, a)    N( q, a)

Proof of Theorem ostth2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
2 ostth.1 . . . . . . . 8  |-  ( ph  ->  F  e.  A )
3 ostth2.2 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
4 eluz2b2 10481 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
53, 4sylib 189 . . . . . . . . . 10  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
65simpld 446 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
7 nnq 10520 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  QQ )
86, 7syl 16 . . . . . . . 8  |-  ( ph  ->  N  e.  QQ )
9 qabsabv.a . . . . . . . . 9  |-  A  =  (AbsVal `  Q )
10 qrng.q . . . . . . . . . 10  |-  Q  =  (flds  QQ )
1110qrngbas 21181 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
129, 11abvcl 15840 . . . . . . . 8  |-  ( ( F  e.  A  /\  N  e.  QQ )  ->  ( F `  N
)  e.  RR )
132, 8, 12syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  RR )
14 ostth2.3 . . . . . . 7  |-  ( ph  ->  1  <  ( F `
 N ) )
1513, 14rplogcld 20392 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR+ )
166nnred 9948 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
175simprd 450 . . . . . . 7  |-  ( ph  ->  1  <  N )
1816, 17rplogcld 20392 . . . . . 6  |-  ( ph  ->  ( log `  N
)  e.  RR+ )
1915, 18rpdivcld 10598 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  e.  RR+ )
201, 19syl5eqel 2472 . . . 4  |-  ( ph  ->  R  e.  RR+ )
2120rpred 10581 . . 3  |-  ( ph  ->  R  e.  RR )
2220rpgt0d 10584 . . 3  |-  ( ph  ->  0  <  R )
236nnnn0d 10207 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
2410, 9qabvle 21187 . . . . . . . . 9  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
252, 23, 24syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( F `  N
)  <_  N )
266nnne0d 9977 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
2710qrng0 21183 . . . . . . . . . . . 12  |-  0  =  ( 0g `  Q )
289, 11, 27abvgt0 15844 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  N  e.  QQ  /\  N  =/=  0 )  ->  0  <  ( F `  N
) )
292, 8, 26, 28syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 N ) )
3013, 29elrpd 10579 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
3130reeflogd 20387 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  =  ( F `  N ) )
326nnrpd 10580 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR+ )
3332reeflogd 20387 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  N ) )  =  N )
3425, 31, 333brtr4d 4184 . . . . . . 7  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  <_  ( exp `  ( log `  N ) ) )
3515rpred 10581 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR )
3632relogcld 20386 . . . . . . . 8  |-  ( ph  ->  ( log `  N
)  e.  RR )
37 efle 12647 . . . . . . . 8  |-  ( ( ( log `  ( F `  N )
)  e.  RR  /\  ( log `  N )  e.  RR )  -> 
( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3835, 36, 37syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3934, 38mpbird 224 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( log `  N ) )
4018rpcnd 10583 . . . . . . 7  |-  ( ph  ->  ( log `  N
)  e.  CC )
4140mulid1d 9039 . . . . . 6  |-  ( ph  ->  ( ( log `  N
)  x.  1 )  =  ( log `  N
) )
4239, 41breqtrrd 4180 . . . . 5  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( ( log `  N )  x.  1 ) )
43 1re 9024 . . . . . . 7  |-  1  e.  RR
4443a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  RR )
4535, 44, 18ledivmuld 10630 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  N
) )  /  ( log `  N ) )  <_  1  <->  ( log `  ( F `  N
) )  <_  (
( log `  N
)  x.  1 ) ) )
4642, 45mpbird 224 . . . 4  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  <_ 
1 )
471, 46syl5eqbr 4187 . . 3  |-  ( ph  ->  R  <_  1 )
48 0xr 9065 . . . 4  |-  0  e.  RR*
49 elioc2 10906 . . . 4  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) ) )
5048, 43, 49mp2an 654 . . 3  |-  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) )
5121, 22, 47, 50syl3anbrc 1138 . 2  |-  ( ph  ->  R  e.  ( 0 (,] 1 ) )
5210, 9qabsabv 21191 . . . 4  |-  ( abs  |`  QQ )  e.  A
53 fvres 5686 . . . . . . . 8  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
5453oveq1d 6036 . . . . . . 7  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  R )  =  ( ( abs `  y
)  ^ c  R
) )
5554mpteq2ia 4233 . . . . . 6  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )
5655eqcomi 2392 . . . . 5  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )
579, 11, 56abvcxp 21177 . . . 4  |-  ( ( ( abs  |`  QQ )  e.  A  /\  R  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
5852, 51, 57sylancr 645 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
59 eluzelz 10429 . . . . . 6  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
60 zq 10513 . . . . . 6  |-  ( z  e.  ZZ  ->  z  e.  QQ )
61 fveq2 5669 . . . . . . . 8  |-  ( y  =  z  ->  ( abs `  y )  =  ( abs `  z
) )
6261oveq1d 6036 . . . . . . 7  |-  ( y  =  z  ->  (
( abs `  y
)  ^ c  R
)  =  ( ( abs `  z )  ^ c  R ) )
63 eqid 2388 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )
64 ovex 6046 . . . . . . 7  |-  ( ( abs `  z )  ^ c  R )  e.  _V
6562, 63, 64fvmpt 5746 . . . . . 6  |-  ( z  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6659, 60, 653syl 19 . . . . 5  |-  ( z  e.  ( ZZ>= `  2
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6766adantl 453 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
68 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ( ZZ>= `  2 )
)
69 eluz2b2 10481 . . . . . . . . 9  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
7068, 69sylib 189 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  e.  NN  /\  1  < 
z ) )
7170simpld 446 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN )
7271nnred 9948 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR )
7371nnnn0d 10207 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN0 )
7473nn0ge0d 10210 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <_  z )
7572, 74absidd 12153 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( abs `  z )  =  z )
7675oveq1d 6036 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( abs `  z )  ^ c  R )  =  ( z  ^ c  R
) )
7772recnd 9048 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  CC )
7871nnne0d 9977 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  =/=  0 )
7920rpcnd 10583 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
8079adantr 452 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  CC )
8177, 78, 80cxpefd 20471 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( exp `  ( R  x.  ( log `  z ) ) ) )
82 padic.j . . . . . . . . . . 11  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
83 ostth.k . . . . . . . . . . 11  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
842adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  F  e.  A )
853adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  N  e.  ( ZZ>= `  2 )
)
8614adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  N ) )
87 eqid 2388 . . . . . . . . . . 11  |-  ( ( log `  ( F `
 z ) )  /  ( log `  z
) )  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) )
88 eqid 2388 . . . . . . . . . . 11  |-  if ( ( F `  z
)  <_  1 , 
1 ,  ( F `
 z ) )  =  if ( ( F `  z )  <_  1 ,  1 ,  ( F `  z ) )
89 eqid 2388 . . . . . . . . . . 11  |-  ( ( log `  N )  /  ( log `  z
) )  =  ( ( log `  N
)  /  ( log `  z ) )
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 21198 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  z )  /\  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) ) )
9190simprd 450 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
9290simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  z ) )
93 eqid 2388 . . . . . . . . . . 11  |-  if ( ( F `  N
)  <_  1 , 
1 ,  ( F `
 N ) )  =  if ( ( F `  N )  <_  1 ,  1 ,  ( F `  N ) )
94 eqid 2388 . . . . . . . . . . 11  |-  ( ( log `  z )  /  ( log `  N
) )  =  ( ( log `  z
)  /  ( log `  N ) )
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 21198 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  N )  /\  (
( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) )
9695simprd 450 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  <_  R
)
9721adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  RR )
9859adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ZZ )
9998, 60syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  QQ )
1009, 11abvcl 15840 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ )  ->  ( F `  z
)  e.  RR )
10184, 99, 100syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR )
1029, 11, 27abvgt0 15844 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ  /\  z  =/=  0 )  ->  0  <  ( F `  z
) )
10384, 99, 78, 102syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( F `  z ) )
104101, 103elrpd 10579 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR+ )
105104relogcld 20386 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  RR )
10671nnrpd 10580 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR+ )
107106relogcld 20386 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  RR )
108 ef0 12621 . . . . . . . . . . . . . 14  |-  ( exp `  0 )  =  1
10970simprd 450 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  z )
110106reeflogd 20387 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  z
) )  =  z )
111109, 110breqtrrd 4180 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( exp `  ( log `  z ) ) )
112108, 111syl5eqbr 4187 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) )
113 0re 9025 . . . . . . . . . . . . . 14  |-  0  e.  RR
114 eflt 12646 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( log `  z )  e.  RR )  -> 
( 0  <  ( log `  z )  <->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) ) )
115113, 107, 114sylancr 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( log `  z
)  <->  ( exp `  0
)  <  ( exp `  ( log `  z
) ) ) )
116112, 115mpbird 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( log `  z ) )
117116gt0ne0d 9524 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  =/=  0
)
118105, 107, 117redivcld 9775 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  e.  RR )
11997, 118letri3d 9148 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  =  ( ( log `  ( F `  z
) )  /  ( log `  z ) )  <-> 
( R  <_  (
( log `  ( F `  z )
)  /  ( log `  z ) )  /\  ( ( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) ) )
12091, 96, 119mpbir2and 889 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
121120oveq1d 6036 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( ( ( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) ) )
122105recnd 9048 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  CC )
123107recnd 9048 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  CC )
124122, 123, 117divcan1d 9724 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
125121, 124eqtrd 2420 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
126125fveq2d 5673 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( R  x.  ( log `  z ) ) )  =  ( exp `  ( log `  ( F `  z )
) ) )
127104reeflogd 20387 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  ( F `  z )
) )  =  ( F `  z ) )
12881, 126, 1273eqtrd 2424 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( F `  z ) )
12967, 76, 1283eqtrrd 2425 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  =  ( ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
) )
13010, 9, 2, 58, 129ostthlem1 21189 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )
131 oveq2 6029 . . . . 5  |-  ( a  =  R  ->  (
( abs `  y
)  ^ c  a )  =  ( ( abs `  y )  ^ c  R ) )
132131mpteq2dv 4238 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) )
133132eqeq2d 2399 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  <->  F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) ) )
134133rspcev 2996 . 2  |-  ( ( R  e.  ( 0 (,] 1 )  /\  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
13551, 130, 134syl2anc 643 1  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651   ifcif 3683   class class class wbr 4154    e. cmpt 4208    |` cres 4821   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    x. cmul 8929   RR*cxr 9053    < clt 9054    <_ cle 9055   -ucneg 9225    / cdiv 9610   NNcn 9933   2c2 9982   NN0cn0 10154   ZZcz 10215   ZZ>=cuz 10421   QQcq 10507   RR+crp 10545   (,]cioc 10850   ^cexp 11310   abscabs 11967   expce 12592   Primecprime 13007    pCnt cpc 13138   ↾s cress 13398  AbsValcabv 15832  ℂfldccnfld 16627   logclog 20320    ^ c ccxp 20321
This theorem is referenced by:  ostth  21201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-tpos 6416  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-grp 14740  df-minusg 14741  df-mulg 14743  df-subg 14869  df-cntz 15044  df-cmn 15342  df-mgp 15577  df-rng 15591  df-cring 15592  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-invr 15705  df-dvr 15716  df-drng 15765  df-subrg 15794  df-abv 15833  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cxp 20323
  Copyright terms: Public domain W3C validator