MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Unicode version

Theorem ostth2 20734
Description: - Lemma for ostth 20736: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth2.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
ostth2.3  |-  ( ph  ->  1  <  ( F `
 N ) )
ostth2.4  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
Assertion
Ref Expression
ostth2  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Distinct variable groups:    q, a, x, y, ph    J, a, y    A, a, q, x, y   
x, N, y    x, Q, y    F, a, q, y    R, a, q, y   
x, F
Allowed substitution hints:    Q( q, a)    R( x)    J( x, q)    K( x, y, q, a)    N( q, a)

Proof of Theorem ostth2
StepHypRef Expression
1 ostth2.4 . . . . 5  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
2 ostth.1 . . . . . . . 8  |-  ( ph  ->  F  e.  A )
3 ostth2.2 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
4 eluz2b2 10243 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
53, 4sylib 190 . . . . . . . . . 10  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
65simpld 447 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
7 nnq 10282 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  QQ )
86, 7syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  QQ )
9 qabsabv.a . . . . . . . . 9  |-  A  =  (AbsVal `  Q )
10 qrng.q . . . . . . . . . 10  |-  Q  =  (flds  QQ )
1110qrngbas 20716 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
129, 11abvcl 15537 . . . . . . . 8  |-  ( ( F  e.  A  /\  N  e.  QQ )  ->  ( F `  N
)  e.  RR )
132, 8, 12syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  RR )
14 ostth2.3 . . . . . . 7  |-  ( ph  ->  1  <  ( F `
 N ) )
1513, 14rplogcld 19928 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR+ )
166nnred 9715 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
175simprd 451 . . . . . . 7  |-  ( ph  ->  1  <  N )
1816, 17rplogcld 19928 . . . . . 6  |-  ( ph  ->  ( log `  N
)  e.  RR+ )
1915, 18rpdivcld 10360 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  e.  RR+ )
201, 19syl5eqel 2340 . . . 4  |-  ( ph  ->  R  e.  RR+ )
2120rpred 10343 . . 3  |-  ( ph  ->  R  e.  RR )
2220rpgt0d 10346 . . 3  |-  ( ph  ->  0  <  R )
236nnnn0d 9971 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
2410, 9qabvle 20722 . . . . . . . . 9  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
252, 23, 24syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( F `  N
)  <_  N )
266nnne0d 9744 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
2710qrng0 20718 . . . . . . . . . . . 12  |-  0  =  ( 0g `  Q )
289, 11, 27abvgt0 15541 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  N  e.  QQ  /\  N  =/=  0 )  ->  0  <  ( F `  N
) )
292, 8, 26, 28syl3anc 1187 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 N ) )
3013, 29elrpd 10341 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
3130reeflogd 19923 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  =  ( F `  N ) )
326nnrpd 10342 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR+ )
3332reeflogd 19923 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  N ) )  =  N )
3425, 31, 333brtr4d 4013 . . . . . . 7  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  <_  ( exp `  ( log `  N ) ) )
3515rpred 10343 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR )
3632relogcld 19922 . . . . . . . 8  |-  ( ph  ->  ( log `  N
)  e.  RR )
37 efle 12346 . . . . . . . 8  |-  ( ( ( log `  ( F `  N )
)  e.  RR  /\  ( log `  N )  e.  RR )  -> 
( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3835, 36, 37syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3934, 38mpbird 225 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( log `  N ) )
4018rpcnd 10345 . . . . . . 7  |-  ( ph  ->  ( log `  N
)  e.  CC )
4140mulid1d 8806 . . . . . 6  |-  ( ph  ->  ( ( log `  N
)  x.  1 )  =  ( log `  N
) )
4239, 41breqtrrd 4009 . . . . 5  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( ( log `  N )  x.  1 ) )
43 1re 8791 . . . . . . 7  |-  1  e.  RR
4443a1i 12 . . . . . 6  |-  ( ph  ->  1  e.  RR )
4535, 44, 18ledivmuld 10392 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  N
) )  /  ( log `  N ) )  <_  1  <->  ( log `  ( F `  N
) )  <_  (
( log `  N
)  x.  1 ) ) )
4642, 45mpbird 225 . . . 4  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  <_ 
1 )
471, 46syl5eqbr 4016 . . 3  |-  ( ph  ->  R  <_  1 )
48 0xr 8832 . . . 4  |-  0  e.  RR*
49 elioc2 10665 . . . 4  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) ) )
5048, 43, 49mp2an 656 . . 3  |-  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) )
5121, 22, 47, 50syl3anbrc 1141 . 2  |-  ( ph  ->  R  e.  ( 0 (,] 1 ) )
5210, 9qabsabv 20726 . . . 4  |-  ( abs  |`  QQ )  e.  A
53 fvres 5461 . . . . . . . 8  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
5453oveq1d 5793 . . . . . . 7  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  R )  =  ( ( abs `  y
)  ^ c  R
) )
5554mpteq2ia 4062 . . . . . 6  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )
5655eqcomi 2260 . . . . 5  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )
579, 11, 56abvcxp 20712 . . . 4  |-  ( ( ( abs  |`  QQ )  e.  A  /\  R  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
5852, 51, 57sylancr 647 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
59 eluzelz 10191 . . . . . 6  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
60 zq 10275 . . . . . 6  |-  ( z  e.  ZZ  ->  z  e.  QQ )
61 fveq2 5444 . . . . . . . 8  |-  ( y  =  z  ->  ( abs `  y )  =  ( abs `  z
) )
6261oveq1d 5793 . . . . . . 7  |-  ( y  =  z  ->  (
( abs `  y
)  ^ c  R
)  =  ( ( abs `  z )  ^ c  R ) )
63 eqid 2256 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )
64 ovex 5803 . . . . . . 7  |-  ( ( abs `  z )  ^ c  R )  e.  _V
6562, 63, 64fvmpt 5522 . . . . . 6  |-  ( z  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6659, 60, 653syl 20 . . . . 5  |-  ( z  e.  ( ZZ>= `  2
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6766adantl 454 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
68 simpr 449 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ( ZZ>= `  2 )
)
69 eluz2b2 10243 . . . . . . . . 9  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
7068, 69sylib 190 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  e.  NN  /\  1  < 
z ) )
7170simpld 447 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN )
7271nnred 9715 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR )
7371nnnn0d 9971 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN0 )
7473nn0ge0d 9974 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <_  z )
7572, 74absidd 11856 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( abs `  z )  =  z )
7675oveq1d 5793 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( abs `  z )  ^ c  R )  =  ( z  ^ c  R
) )
7772recnd 8815 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  CC )
7871nnne0d 9744 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  =/=  0 )
7920rpcnd 10345 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
8079adantr 453 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  CC )
8177, 78, 80cxpefd 20007 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( exp `  ( R  x.  ( log `  z ) ) ) )
82 padic.j . . . . . . . . . . 11  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
83 ostth.k . . . . . . . . . . 11  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
842adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  F  e.  A )
853adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  N  e.  ( ZZ>= `  2 )
)
8614adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  N ) )
87 eqid 2256 . . . . . . . . . . 11  |-  ( ( log `  ( F `
 z ) )  /  ( log `  z
) )  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) )
88 eqid 2256 . . . . . . . . . . 11  |-  if ( ( F `  z
)  <_  1 , 
1 ,  ( F `
 z ) )  =  if ( ( F `  z )  <_  1 ,  1 ,  ( F `  z ) )
89 eqid 2256 . . . . . . . . . . 11  |-  ( ( log `  N )  /  ( log `  z
) )  =  ( ( log `  N
)  /  ( log `  z ) )
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 20733 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  z )  /\  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) ) )
9190simprd 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
9290simpld 447 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  z ) )
93 eqid 2256 . . . . . . . . . . 11  |-  if ( ( F `  N
)  <_  1 , 
1 ,  ( F `
 N ) )  =  if ( ( F `  N )  <_  1 ,  1 ,  ( F `  N ) )
94 eqid 2256 . . . . . . . . . . 11  |-  ( ( log `  z )  /  ( log `  N
) )  =  ( ( log `  z
)  /  ( log `  N ) )
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 20733 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  N )  /\  (
( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) )
9695simprd 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  <_  R
)
9721adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  RR )
9859adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ZZ )
9998, 60syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  QQ )
1009, 11abvcl 15537 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ )  ->  ( F `  z
)  e.  RR )
10184, 99, 100syl2anc 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR )
1029, 11, 27abvgt0 15541 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ  /\  z  =/=  0 )  ->  0  <  ( F `  z
) )
10384, 99, 78, 102syl3anc 1187 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( F `  z ) )
104101, 103elrpd 10341 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR+ )
105104relogcld 19922 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  RR )
10671nnrpd 10342 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR+ )
107106relogcld 19922 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  RR )
108 ef0 12320 . . . . . . . . . . . . . 14  |-  ( exp `  0 )  =  1
10970simprd 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  z )
110106reeflogd 19923 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  z
) )  =  z )
111109, 110breqtrrd 4009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( exp `  ( log `  z ) ) )
112108, 111syl5eqbr 4016 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) )
113 0re 8792 . . . . . . . . . . . . . 14  |-  0  e.  RR
114 eflt 12345 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( log `  z )  e.  RR )  -> 
( 0  <  ( log `  z )  <->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) ) )
115113, 107, 114sylancr 647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( log `  z
)  <->  ( exp `  0
)  <  ( exp `  ( log `  z
) ) ) )
116112, 115mpbird 225 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( log `  z ) )
117116gt0ne0d 9291 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  =/=  0
)
118105, 107, 117redivcld 9542 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  e.  RR )
11997, 118letri3d 8915 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  =  ( ( log `  ( F `  z
) )  /  ( log `  z ) )  <-> 
( R  <_  (
( log `  ( F `  z )
)  /  ( log `  z ) )  /\  ( ( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) ) )
12091, 96, 119mpbir2and 893 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
121120oveq1d 5793 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( ( ( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) ) )
122105recnd 8815 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  CC )
123107recnd 8815 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  CC )
124122, 123, 117divcan1d 9491 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
125121, 124eqtrd 2288 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
126125fveq2d 5448 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( R  x.  ( log `  z ) ) )  =  ( exp `  ( log `  ( F `  z )
) ) )
127104reeflogd 19923 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  ( F `  z )
) )  =  ( F `  z ) )
12881, 126, 1273eqtrd 2292 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( F `  z ) )
12967, 76, 1283eqtrrd 2293 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  =  ( ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
) )
13010, 9, 2, 58, 129ostthlem1 20724 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )
131 oveq2 5786 . . . . 5  |-  ( a  =  R  ->  (
( abs `  y
)  ^ c  a )  =  ( ( abs `  y )  ^ c  R ) )
132131mpteq2dv 4067 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) )
133132eqeq2d 2267 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  <->  F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) ) )
134133rcla4ev 2852 . 2  |-  ( ( R  e.  ( 0 (,] 1 )  /\  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
13551, 130, 134syl2anc 645 1  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517   ifcif 3525   class class class wbr 3983    e. cmpt 4037    |` cres 4649   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    x. cmul 8696   RR*cxr 8820    < clt 8821    <_ cle 8822   -ucneg 8992    / cdiv 9377   NNcn 9700   2c2 9749   NN0cn0 9918   ZZcz 9977   ZZ>=cuz 10183   QQcq 10269   RR+crp 10307   (,]cioc 10609   ^cexp 11056   abscabs 11670   expce 12291   Primecprime 12706    pCnt cpc 12837   ↾s cress 13097  AbsValcabv 15529  ℂfldccnfld 16325   logclog 19860    ^ c ccxp 19861
This theorem is referenced by:  ostth  20736
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-tpos 6154  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-grp 14437  df-minusg 14438  df-mulg 14440  df-subg 14566  df-cntz 14741  df-cmn 15039  df-mgp 15274  df-ring 15288  df-cring 15289  df-ur 15290  df-oppr 15353  df-dvdsr 15371  df-unit 15372  df-invr 15402  df-dvr 15413  df-drng 15462  df-subrg 15491  df-abv 15530  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-cxp 19863
  Copyright terms: Public domain W3C validator