MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Unicode version

Theorem ostth2 20802
Description: - Lemma for ostth 20804: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth2.2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
ostth2.3  |-  ( ph  ->  1  <  ( F `
 N ) )
ostth2.4  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
Assertion
Ref Expression
ostth2  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Distinct variable groups:    q, a, x, y, ph    J, a, y    A, a, q, x, y   
x, N, y    x, Q, y    F, a, q, y    R, a, q, y   
x, F
Allowed substitution hints:    Q( q, a)    R( x)    J( x, q)    K( x, y, q, a)    N( q, a)

Proof of Theorem ostth2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5  |-  R  =  ( ( log `  ( F `  N )
)  /  ( log `  N ) )
2 ostth.1 . . . . . . . 8  |-  ( ph  ->  F  e.  A )
3 ostth2.2 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
4 eluz2b2 10306 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
53, 4sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
65simpld 445 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
7 nnq 10345 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  QQ )
86, 7syl 15 . . . . . . . 8  |-  ( ph  ->  N  e.  QQ )
9 qabsabv.a . . . . . . . . 9  |-  A  =  (AbsVal `  Q )
10 qrng.q . . . . . . . . . 10  |-  Q  =  (flds  QQ )
1110qrngbas 20784 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
129, 11abvcl 15605 . . . . . . . 8  |-  ( ( F  e.  A  /\  N  e.  QQ )  ->  ( F `  N
)  e.  RR )
132, 8, 12syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  RR )
14 ostth2.3 . . . . . . 7  |-  ( ph  ->  1  <  ( F `
 N ) )
1513, 14rplogcld 19996 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR+ )
166nnred 9777 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
175simprd 449 . . . . . . 7  |-  ( ph  ->  1  <  N )
1816, 17rplogcld 19996 . . . . . 6  |-  ( ph  ->  ( log `  N
)  e.  RR+ )
1915, 18rpdivcld 10423 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  e.  RR+ )
201, 19syl5eqel 2380 . . . 4  |-  ( ph  ->  R  e.  RR+ )
2120rpred 10406 . . 3  |-  ( ph  ->  R  e.  RR )
2220rpgt0d 10409 . . 3  |-  ( ph  ->  0  <  R )
236nnnn0d 10034 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
2410, 9qabvle 20790 . . . . . . . . 9  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
252, 23, 24syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( F `  N
)  <_  N )
266nnne0d 9806 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
2710qrng0 20786 . . . . . . . . . . . 12  |-  0  =  ( 0g `  Q )
289, 11, 27abvgt0 15609 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  N  e.  QQ  /\  N  =/=  0 )  ->  0  <  ( F `  N
) )
292, 8, 26, 28syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 N ) )
3013, 29elrpd 10404 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
3130reeflogd 19991 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  =  ( F `  N ) )
326nnrpd 10405 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR+ )
3332reeflogd 19991 . . . . . . . 8  |-  ( ph  ->  ( exp `  ( log `  N ) )  =  N )
3425, 31, 333brtr4d 4069 . . . . . . 7  |-  ( ph  ->  ( exp `  ( log `  ( F `  N ) ) )  <_  ( exp `  ( log `  N ) ) )
3515rpred 10406 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  N )
)  e.  RR )
3632relogcld 19990 . . . . . . . 8  |-  ( ph  ->  ( log `  N
)  e.  RR )
37 efle 12414 . . . . . . . 8  |-  ( ( ( log `  ( F `  N )
)  e.  RR  /\  ( log `  N )  e.  RR )  -> 
( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3835, 36, 37syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( log `  ( F `  N )
)  <_  ( log `  N )  <->  ( exp `  ( log `  ( F `  N )
) )  <_  ( exp `  ( log `  N
) ) ) )
3934, 38mpbird 223 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( log `  N ) )
4018rpcnd 10408 . . . . . . 7  |-  ( ph  ->  ( log `  N
)  e.  CC )
4140mulid1d 8868 . . . . . 6  |-  ( ph  ->  ( ( log `  N
)  x.  1 )  =  ( log `  N
) )
4239, 41breqtrrd 4065 . . . . 5  |-  ( ph  ->  ( log `  ( F `  N )
)  <_  ( ( log `  N )  x.  1 ) )
43 1re 8853 . . . . . . 7  |-  1  e.  RR
4443a1i 10 . . . . . 6  |-  ( ph  ->  1  e.  RR )
4535, 44, 18ledivmuld 10455 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  N
) )  /  ( log `  N ) )  <_  1  <->  ( log `  ( F `  N
) )  <_  (
( log `  N
)  x.  1 ) ) )
4642, 45mpbird 223 . . . 4  |-  ( ph  ->  ( ( log `  ( F `  N )
)  /  ( log `  N ) )  <_ 
1 )
471, 46syl5eqbr 4072 . . 3  |-  ( ph  ->  R  <_  1 )
48 0xr 8894 . . . 4  |-  0  e.  RR*
49 elioc2 10729 . . . 4  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) ) )
5048, 43, 49mp2an 653 . . 3  |-  ( R  e.  ( 0 (,] 1 )  <->  ( R  e.  RR  /\  0  < 
R  /\  R  <_  1 ) )
5121, 22, 47, 50syl3anbrc 1136 . 2  |-  ( ph  ->  R  e.  ( 0 (,] 1 ) )
5210, 9qabsabv 20794 . . . 4  |-  ( abs  |`  QQ )  e.  A
53 fvres 5558 . . . . . . . 8  |-  ( y  e.  QQ  ->  (
( abs  |`  QQ ) `
 y )  =  ( abs `  y
) )
5453oveq1d 5889 . . . . . . 7  |-  ( y  e.  QQ  ->  (
( ( abs  |`  QQ ) `
 y )  ^ c  R )  =  ( ( abs `  y
)  ^ c  R
) )
5554mpteq2ia 4118 . . . . . 6  |-  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )
5655eqcomi 2300 . . . . 5  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( ( abs  |`  QQ ) `
 y )  ^ c  R ) )
579, 11, 56abvcxp 20780 . . . 4  |-  ( ( ( abs  |`  QQ )  e.  A  /\  R  e.  ( 0 (,] 1
) )  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
5852, 51, 57sylancr 644 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) )  e.  A
)
59 eluzelz 10254 . . . . . 6  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  ZZ )
60 zq 10338 . . . . . 6  |-  ( z  e.  ZZ  ->  z  e.  QQ )
61 fveq2 5541 . . . . . . . 8  |-  ( y  =  z  ->  ( abs `  y )  =  ( abs `  z
) )
6261oveq1d 5889 . . . . . . 7  |-  ( y  =  z  ->  (
( abs `  y
)  ^ c  R
)  =  ( ( abs `  z )  ^ c  R ) )
63 eqid 2296 . . . . . . 7  |-  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) )
64 ovex 5899 . . . . . . 7  |-  ( ( abs `  z )  ^ c  R )  e.  _V
6562, 63, 64fvmpt 5618 . . . . . 6  |-  ( z  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6659, 60, 653syl 18 . . . . 5  |-  ( z  e.  ( ZZ>= `  2
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
6766adantl 452 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
)  =  ( ( abs `  z )  ^ c  R ) )
68 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ( ZZ>= `  2 )
)
69 eluz2b2 10306 . . . . . . . . 9  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  1  < 
z ) )
7068, 69sylib 188 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  e.  NN  /\  1  < 
z ) )
7170simpld 445 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN )
7271nnred 9777 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR )
7371nnnn0d 10034 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  NN0 )
7473nn0ge0d 10037 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <_  z )
7572, 74absidd 11921 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( abs `  z )  =  z )
7675oveq1d 5889 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( abs `  z )  ^ c  R )  =  ( z  ^ c  R
) )
7772recnd 8877 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  CC )
7871nnne0d 9806 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  =/=  0 )
7920rpcnd 10408 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
8079adantr 451 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  CC )
8177, 78, 80cxpefd 20075 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( exp `  ( R  x.  ( log `  z ) ) ) )
82 padic.j . . . . . . . . . . 11  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
83 ostth.k . . . . . . . . . . 11  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
842adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  F  e.  A )
853adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  N  e.  ( ZZ>= `  2 )
)
8614adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  N ) )
87 eqid 2296 . . . . . . . . . . 11  |-  ( ( log `  ( F `
 z ) )  /  ( log `  z
) )  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) )
88 eqid 2296 . . . . . . . . . . 11  |-  if ( ( F `  z
)  <_  1 , 
1 ,  ( F `
 z ) )  =  if ( ( F `  z )  <_  1 ,  1 ,  ( F `  z ) )
89 eqid 2296 . . . . . . . . . . 11  |-  ( ( log `  N )  /  ( log `  z
) )  =  ( ( log `  N
)  /  ( log `  z ) )
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 20801 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  z )  /\  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) ) )
9190simprd 449 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  <_  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
9290simpld 445 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( F `  z ) )
93 eqid 2296 . . . . . . . . . . 11  |-  if ( ( F `  N
)  <_  1 , 
1 ,  ( F `
 N ) )  =  if ( ( F `  N )  <_  1 ,  1 ,  ( F `  N ) )
94 eqid 2296 . . . . . . . . . . 11  |-  ( ( log `  z )  /  ( log `  N
) )  =  ( ( log `  z
)  /  ( log `  N ) )
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 20801 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 1  <  ( F `  N )  /\  (
( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) )
9695simprd 449 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  <_  R
)
9721adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  e.  RR )
9859adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  ZZ )
9998, 60syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  QQ )
1009, 11abvcl 15605 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ )  ->  ( F `  z
)  e.  RR )
10184, 99, 100syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR )
1029, 11, 27abvgt0 15609 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  z  e.  QQ  /\  z  =/=  0 )  ->  0  <  ( F `  z
) )
10384, 99, 78, 102syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( F `  z ) )
104101, 103elrpd 10404 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  e.  RR+ )
105104relogcld 19990 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  RR )
10671nnrpd 10405 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  z  e.  RR+ )
107106relogcld 19990 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  RR )
108 ef0 12388 . . . . . . . . . . . . . 14  |-  ( exp `  0 )  =  1
10970simprd 449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  z )
110106reeflogd 19991 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  z
) )  =  z )
111109, 110breqtrrd 4065 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  1  <  ( exp `  ( log `  z ) ) )
112108, 111syl5eqbr 4072 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) )
113 0re 8854 . . . . . . . . . . . . . 14  |-  0  e.  RR
114 eflt 12413 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( log `  z )  e.  RR )  -> 
( 0  <  ( log `  z )  <->  ( exp `  0 )  <  ( exp `  ( log `  z
) ) ) )
115113, 107, 114sylancr 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( log `  z
)  <->  ( exp `  0
)  <  ( exp `  ( log `  z
) ) ) )
116112, 115mpbird 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  0  <  ( log `  z ) )
117116gt0ne0d 9353 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  =/=  0
)
118105, 107, 117redivcld 9604 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( ( log `  ( F `  z ) )  / 
( log `  z
) )  e.  RR )
11997, 118letri3d 8977 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  =  ( ( log `  ( F `  z
) )  /  ( log `  z ) )  <-> 
( R  <_  (
( log `  ( F `  z )
)  /  ( log `  z ) )  /\  ( ( log `  ( F `  z )
)  /  ( log `  z ) )  <_  R ) ) )
12091, 96, 119mpbir2and 888 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  R  =  ( ( log `  ( F `  z )
)  /  ( log `  z ) ) )
121120oveq1d 5889 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( ( ( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) ) )
122105recnd 8877 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  ( F `  z
) )  e.  CC )
123107recnd 8877 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( log `  z )  e.  CC )
124122, 123, 117divcan1d 9553 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( (
( log `  ( F `  z )
)  /  ( log `  z ) )  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
125121, 124eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( R  x.  ( log `  z
) )  =  ( log `  ( F `
 z ) ) )
126125fveq2d 5545 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( R  x.  ( log `  z ) ) )  =  ( exp `  ( log `  ( F `  z )
) ) )
127104reeflogd 19991 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( exp `  ( log `  ( F `  z )
) )  =  ( F `  z ) )
12881, 126, 1273eqtrd 2332 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ^ c  R )  =  ( F `  z ) )
12967, 76, 1283eqtrrd 2333 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( F `  z )  =  ( ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) `  z
) )
13010, 9, 2, 58, 129ostthlem1 20792 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )
131 oveq2 5882 . . . . 5  |-  ( a  =  R  ->  (
( abs `  y
)  ^ c  a )  =  ( ( abs `  y )  ^ c  R ) )
132131mpteq2dv 4123 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( abs `  y
)  ^ c  a ) )  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) )
133132eqeq2d 2307 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c 
a ) )  <->  F  =  ( y  e.  QQ  |->  ( ( abs `  y
)  ^ c  R
) ) ) )
134133rspcev 2897 . 2  |-  ( ( R  e.  ( 0 (,] 1 )  /\  F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  R ) ) )  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
13551, 130, 134syl2anc 642 1  |-  ( ph  ->  E. a  e.  ( 0 (,] 1 ) F  =  ( y  e.  QQ  |->  ( ( abs `  y )  ^ c  a ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   ifcif 3578   class class class wbr 4039    e. cmpt 4093    |` cres 4707   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   QQcq 10332   RR+crp 10370   (,]cioc 10673   ^cexp 11120   abscabs 11735   expce 12359   Primecprime 12774    pCnt cpc 12905   ↾s cress 13165  AbsValcabv 15597  ℂfldccnfld 16393   logclog 19928    ^ c ccxp 19929
This theorem is referenced by:  ostth  20804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-mulg 14508  df-subg 14634  df-cntz 14809  df-cmn 15107  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-subrg 15559  df-abv 15598  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator