MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot3rdg Unicode version

Theorem ot3rdg 6138
Description: Extract the third member of an ordered triple. (See ot1stg 6136 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdg  |-  ( C  e.  V  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )

Proof of Theorem ot3rdg
StepHypRef Expression
1 df-ot 3652 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5530 . 2  |-  ( 2nd `  <. A ,  B ,  C >. )  =  ( 2nd `  <. <. A ,  B >. ,  C >. )
3 opex 4239 . . 3  |-  <. A ,  B >.  e.  _V
4 op2ndg 6135 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  V )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
53, 4mpan 651 . 2  |-  ( C  e.  V  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
62, 5syl5eq 2329 1  |-  ( C  e.  V  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686   _Vcvv 2790   <.cop 3645   <.cotp 3646   ` cfv 5257   2ndc2nd 6123
This theorem is referenced by:  splval  11468  splcl  11469  ida2  13893  coa2  13903  mamufval  27454  mapdhval  31987  hdmap1val  32062
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-ot 3652  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-iota 5221  df-fun 5259  df-fv 5265  df-2nd 6125
  Copyright terms: Public domain W3C validator