Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Unicode version

Theorem outsidele 24166
Description: Relate OutsideOf to  Seg<_. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )

Proof of Theorem outsidele
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr1 961 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
3 simpr2 962 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 963 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
5 brsegle2 24143 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
61, 2, 3, 2, 4, 5syl122anc 1191 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( <. P ,  A >. 
Seg<_ 
<. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A 
Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )
76adantr 451 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
8 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. A ,  B >. )
9 outsideofcom 24162 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
109ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
118, 10mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. B ,  A >. )
12 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simplr1 997 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
14 simplr3 999 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
1512, 13, 14cgrrflxd 24022 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1615adantr 451 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1711, 16jca 518 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr
<. P ,  B >. ) )
18 simprrl 740 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  y
>. )
19 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
20 simplr2 998 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
21 btwncolinear1 24103 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2212, 13, 19, 20, 21syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  ( A  Btwn  <. P ,  y
>.  ->  P  Colinear  <. y ,  A >. ) )
2322adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2418, 23mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  P  Colinear  <. y ,  A >. )
25 outsidene1 24157 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
2625ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
278, 26mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  =/=  P )
2827neneqd 2462 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  A  =  P
)
29 df-3an 936 . . . . . . . . . . . . . 14  |-  ( ( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  /\  P  Btwn  <. y ,  A >. )  <->  ( ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <. y ,  A >. ) )
30 simpr2l 1014 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <. P ,  y >. )
3112, 20, 13, 19, 30btwncomand 24049 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <.
y ,  P >. )
32 simpr3 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  P  Btwn  <.
y ,  A >. )
33 btwnswapid2 24052 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <.
y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3412, 20, 19, 13, 33syl13anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( A  Btwn  <. y ,  P >.  /\  P  Btwn  <.
y ,  A >. )  ->  A  =  P ) )
3534adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  ( ( A  Btwn  <. y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3631, 32, 35mp2and 660 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3729, 36sylan2br 462 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3837expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( P  Btwn  <. y ,  A >.  ->  A  =  P ) )
3928, 38mtod 168 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  P  Btwn  <. y ,  A >. )
40 broutsideof 24155 . . . . . . . . . . 11  |-  ( POutsideOf <. y ,  A >.  <->  ( P  Colinear  <. y ,  A >.  /\  -.  P  Btwn  <.
y ,  A >. ) )
4124, 39, 40sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. y ,  A >. )
42 simprrr 741 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  y >.Cgr <. P ,  B >. )
4341, 42jca 518 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. y ,  A >.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) )
44 outsideofeq 24164 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1205 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4645adantr 451 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( ( ( POutsideOf <. B ,  A >.  /\ 
<. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4717, 43, 46mp2and 660 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  B  =  y )
48 opeq2 3797 . . . . . . . . . 10  |-  ( B  =  y  ->  <. P ,  B >.  =  <. P , 
y >. )
4948breq2d 4035 . . . . . . . . 9  |-  ( B  =  y  ->  ( A  Btwn  <. P ,  B >.  <-> 
A  Btwn  <. P , 
y >. ) )
5018, 49syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( B  =  y  ->  A  Btwn  <. P ,  B >. ) )
5147, 50mpd 14 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5251an4s 799 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  /\  ( y  e.  ( EE `  N
)  /\  ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5352exp32 588 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( y  e.  ( EE `  N
)  ->  ( ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) ) )
5453rexlimdv 2666 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( E. y  e.  ( EE `  N
) ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) )
557, 54sylbid 206 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  ->  A  Btwn  <. P ,  B >. ) )
56 btwnsegle 24151 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5756adantr 451 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5855, 57impbid 183 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) )
5958ex 423 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   <.cop 3643   class class class wbr 4023   ` cfv 5255   NNcn 9746   EEcee 23927    Btwn cbtwn 23928  Cgrccgr 23929    Colinear ccolin 24071    Seg<_ csegle 24140  OutsideOfcoutsideof 24153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-ee 23930  df-btwn 23931  df-cgr 23932  df-ofs 24017  df-ifs 24073  df-cgr3 24074  df-colinear 24075  df-fs 24076  df-segle 24141  df-outsideof 24154
  Copyright terms: Public domain W3C validator