Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsidele Unicode version

Theorem outsidele 24827
Description: Relate OutsideOf to  Seg<_. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsidele  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )

Proof of Theorem outsidele
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr1 961 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
3 simpr2 962 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 963 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
5 brsegle2 24804 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
61, 2, 3, 2, 4, 5syl122anc 1191 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( <. P ,  A >. 
Seg<_ 
<. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A 
Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )
76adantr 451 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <->  E. y  e.  ( EE `  N ) ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )
8 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. A ,  B >. )
9 outsideofcom 24823 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
109ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
POutsideOf <. B ,  A >. ) )
118, 10mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. B ,  A >. )
12 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simplr1 997 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
14 simplr3 999 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
1512, 13, 14cgrrflxd 24683 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1615adantr 451 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  B >.Cgr <. P ,  B >. )
1711, 16jca 518 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr
<. P ,  B >. ) )
18 simprrl 740 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  y
>. )
19 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
20 simplr2 998 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
21 btwncolinear1 24764 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2212, 13, 19, 20, 21syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  ( A  Btwn  <. P ,  y
>.  ->  P  Colinear  <. y ,  A >. ) )
2322adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( A  Btwn  <. P , 
y >.  ->  P  Colinear  <. y ,  A >. ) )
2418, 23mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  P  Colinear  <. y ,  A >. )
25 outsidene1 24818 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
2625ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. A ,  B >.  ->  A  =/=  P
) )
278, 26mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  =/=  P )
2827neneqd 2475 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  A  =  P
)
29 df-3an 936 . . . . . . . . . . . . . 14  |-  ( ( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  /\  P  Btwn  <. y ,  A >. )  <->  ( ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <. y ,  A >. ) )
30 simpr2l 1014 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <. P ,  y >. )
3112, 20, 13, 19, 30btwncomand 24710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  Btwn  <.
y ,  P >. )
32 simpr3 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  P  Btwn  <.
y ,  A >. )
33 btwnswapid2 24713 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <.
y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3412, 20, 19, 13, 33syl13anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( A  Btwn  <. y ,  P >.  /\  P  Btwn  <.
y ,  A >. )  ->  A  =  P ) )
3534adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  ( ( A  Btwn  <. y ,  P >.  /\  P  Btwn  <. y ,  A >. )  ->  A  =  P ) )
3631, 32, 35mp2and 660 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3729, 36sylan2br 462 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( POutsideOf <. A ,  B >.  /\  ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  /\  P  Btwn  <.
y ,  A >. ) )  ->  A  =  P )
3837expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( P  Btwn  <. y ,  A >.  ->  A  =  P ) )
3928, 38mtod 168 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  -.  P  Btwn  <. y ,  A >. )
40 broutsideof 24816 . . . . . . . . . . 11  |-  ( POutsideOf <. y ,  A >.  <->  ( P  Colinear  <. y ,  A >.  /\  -.  P  Btwn  <.
y ,  A >. ) )
4124, 39, 40sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  POutsideOf
<. y ,  A >. )
42 simprrr 741 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  <. P ,  y >.Cgr <. P ,  B >. )
4341, 42jca 518 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( POutsideOf <. y ,  A >.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) )
44 outsideofeq 24825 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4512, 13, 20, 13, 14, 14, 19, 44syl133anc 1205 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( ( POutsideOf <. B ,  A >.  /\  <. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4645adantr 451 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( ( ( POutsideOf <. B ,  A >.  /\ 
<. P ,  B >.Cgr <. P ,  B >. )  /\  ( POutsideOf <. y ,  A >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) )  ->  B  =  y ) )
4717, 43, 46mp2and 660 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  B  =  y )
48 opeq2 3813 . . . . . . . . . 10  |-  ( B  =  y  ->  <. P ,  B >.  =  <. P , 
y >. )
4948breq2d 4051 . . . . . . . . 9  |-  ( B  =  y  ->  ( A  Btwn  <. P ,  B >.  <-> 
A  Btwn  <. P , 
y >. ) )
5018, 49syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  -> 
( B  =  y  ->  A  Btwn  <. P ,  B >. ) )
5147, 50mpd 14 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( POutsideOf
<. A ,  B >.  /\  ( A  Btwn  <. P , 
y >.  /\  <. P , 
y >.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5251an4s 799 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  /\  ( y  e.  ( EE `  N
)  /\  ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. ) ) )  ->  A  Btwn  <. P ,  B >. )
5352exp32 588 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( y  e.  ( EE `  N
)  ->  ( ( A  Btwn  <. P ,  y
>.  /\  <. P ,  y
>.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) ) )
5453rexlimdv 2679 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( E. y  e.  ( EE `  N
) ( A  Btwn  <. P ,  y >.  /\ 
<. P ,  y >.Cgr <. P ,  B >. )  ->  A  Btwn  <. P ,  B >. ) )
557, 54sylbid 206 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  ->  A  Btwn  <. P ,  B >. ) )
56 btwnsegle 24812 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5756adantr 451 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  ->  <. P ,  A >.  Seg<_  <. P ,  B >. ) )
5855, 57impbid 183 . 2  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  POutsideOf <. A ,  B >. )  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) )
5958ex 423 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  ->  ( <. P ,  A >.  Seg<_  <. P ,  B >.  <-> 
A  Btwn  <. P ,  B >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589  Cgrccgr 24590    Colinear ccolin 24732    Seg<_ csegle 24801  OutsideOfcoutsideof 24814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-btwn 24592  df-cgr 24593  df-ofs 24678  df-ifs 24734  df-cgr3 24735  df-colinear 24736  df-fs 24737  df-segle 24802  df-outsideof 24815
  Copyright terms: Public domain W3C validator