Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeu Unicode version

Theorem outsideofeu 24094
Description: Given a non-degenerate ray, there is a unique point congruent to the segment  B C lying on the ray  A R. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeu  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( ( R  =/=  A  /\  B  =/=  C )  ->  E! x  e.  ( EE `  N ) ( AOutsideOf <. x ,  R >.  /\ 
<. A ,  x >.Cgr <. B ,  C >. ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, N    x, R

Proof of Theorem outsideofeu
StepHypRef Expression
1 segcon2 24068 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( ( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )
21adantr 453 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  E. x  e.  ( EE `  N
) ( ( R 
Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )
3 simpl1 963 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  N  e.  NN )
4 simpl2l 1013 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
5 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
6 simpl2r 1014 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  R  e.  ( EE `  N ) )
7 broutsideof2 24085 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  -> 
( AOutsideOf <. x ,  R >.  <-> 
( x  =/=  A  /\  R  =/=  A  /\  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) ) )
83, 4, 5, 6, 7syl13anc 1189 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( AOutsideOf <. x ,  R >.  <-> 
( x  =/=  A  /\  R  =/=  A  /\  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) ) )
98adantr 453 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )  ->  ( AOutsideOf
<. x ,  R >.  <->  (
x  =/=  A  /\  R  =/=  A  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) ) )
10 simp3 962 . . . . . . . . . . 11  |-  ( ( x  =/=  A  /\  R  =/=  A  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )  ->  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )
11 simpllr 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  ( x 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )  ->  B  =/=  C )
1211adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  B  =/=  C )
13 simprlr 742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  <. A ,  x >.Cgr <. B ,  C >. )
14 simp2l 986 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
1514anim1i 554 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )
16 simpl3 965 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
17 cgrdegen 23967 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. A ,  x >.Cgr <. B ,  C >.  ->  ( A  =  x  <->  B  =  C
) ) )
183, 15, 16, 17syl3anc 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( <. A ,  x >.Cgr
<. B ,  C >.  -> 
( A  =  x  <-> 
B  =  C ) ) )
1918adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  ( <. A ,  x >.Cgr <. B ,  C >.  -> 
( A  =  x  <-> 
B  =  C ) ) )
2013, 19mpd 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  ( A  =  x  <->  B  =  C ) )
2120necon3bid 2454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  ( A  =/=  x  <->  B  =/=  C ) )
2212, 21mpbird 225 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  A  =/=  x )
2322necomd 2502 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  x  =/=  A )
24 simplll 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  ( x 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )  ->  R  =/=  A )
2524adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  R  =/=  A )
26 simprr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )
2723, 25, 263jca 1137 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( ( R  =/=  A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )  ->  (
x  =/=  A  /\  R  =/=  A  /\  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )
2827expr 601 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )  ->  (
( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. )  ->  ( x  =/= 
A  /\  R  =/=  A  /\  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) ) )
2910, 28impbid2 197 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )  ->  (
( x  =/=  A  /\  R  =/=  A  /\  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) )  <->  ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )
309, 29bitrd 246 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )  ->  ( AOutsideOf
<. x ,  R >.  <->  (
x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. ) ) )
31 orcom 378 . . . . . . . . 9  |-  ( ( x  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  x >. )  <-> 
( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. ) )
3230, 31syl6bb 254 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( R  =/= 
A  /\  B  =/=  C )  /\  <. A ,  x >.Cgr <. B ,  C >. ) )  ->  ( AOutsideOf
<. x ,  R >.  <->  ( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. ) ) )
3332expr 601 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  ( <. A ,  x >.Cgr <. B ,  C >.  -> 
( AOutsideOf <. x ,  R >.  <-> 
( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. ) ) ) )
3433pm5.32rd 624 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  <-> 
( ( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. )  /\  <. A ,  x >.Cgr <. B ,  C >. ) ) )
3534an32s 782 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  /\  x  e.  ( EE `  N
) )  ->  (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  <-> 
( ( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. )  /\  <. A ,  x >.Cgr <. B ,  C >. ) ) )
3635rexbidva 2531 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  ( E. x  e.  ( EE `  N ) ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  <->  E. x  e.  ( EE `  N ) ( ( R  Btwn  <. A ,  x >.  \/  x  Btwn  <. A ,  R >. )  /\  <. A ,  x >.Cgr
<. B ,  C >. ) ) )
372, 36mpbird 225 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  E. x  e.  ( EE `  N
) ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr <. B ,  C >. ) )
38 simpl1 963 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  N  e.  NN )
39 simpl2l 1013 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
40 simpl2r 1014 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N ) )
41 simpl3l 1015 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
4239, 40, 413jca 1137 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( A  e.  ( EE `  N
)  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
43 simpl3r 1016 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
44 simprl 735 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N ) )
45 simprr 736 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
4643, 44, 453jca 1137 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N
)  /\  x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )
4738, 42, 463jca 1137 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  x  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) ) )
48 simpr 449 . . . . . . 7  |-  ( ( ( R  =/=  A  /\  B  =/=  C
)  /\  ( ( AOutsideOf
<. x ,  R >.  /\ 
<. A ,  x >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) ) )  -> 
( ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\ 
<. A ,  y >.Cgr <. B ,  C >. ) ) )
49 outsideofeq 24093 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  x  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\ 
<. A ,  y >.Cgr <. B ,  C >. ) )  ->  x  =  y ) )
5049imp 420 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  x  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  /\  (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) ) )  ->  x  =  y )
5147, 48, 50syl2an 465 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  /\  ( ( R  =/=  A  /\  B  =/=  C )  /\  (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) ) ) )  ->  x  =  y )
5251an4s 802 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  /\  (
( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) )  /\  ( ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) ) ) )  ->  x  =  y )
5352exp32 591 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  (
( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) )  ->  ( (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) )  ->  x  =  y ) ) )
5453ralrimivv 2605 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  A. x  e.  ( EE `  N
) A. y  e.  ( EE `  N
) ( ( ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) )  ->  x  =  y ) )
55 opeq1 3737 . . . . . 6  |-  ( x  =  y  ->  <. x ,  R >.  =  <. y ,  R >. )
5655breq2d 3975 . . . . 5  |-  ( x  =  y  ->  ( AOutsideOf
<. x ,  R >.  <->  AOutsideOf <.
y ,  R >. ) )
57 opeq2 3738 . . . . . 6  |-  ( x  =  y  ->  <. A ,  x >.  =  <. A , 
y >. )
5857breq1d 3973 . . . . 5  |-  ( x  =  y  ->  ( <. A ,  x >.Cgr <. B ,  C >.  <->  <. A ,  y >.Cgr <. B ,  C >. ) )
5956, 58anbi12d 694 . . . 4  |-  ( x  =  y  ->  (
( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  <-> 
( AOutsideOf <. y ,  R >.  /\  <. A ,  y
>.Cgr <. B ,  C >. ) ) )
6059reu4 2912 . . 3  |-  ( E! x  e.  ( EE
`  N ) ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  <-> 
( E. x  e.  ( EE `  N
) ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr <. B ,  C >. )  /\  A. x  e.  ( EE `  N
) A. y  e.  ( EE `  N
) ( ( ( AOutsideOf <. x ,  R >.  /\  <. A ,  x >.Cgr
<. B ,  C >. )  /\  ( AOutsideOf <. y ,  R >.  /\  <. A , 
y >.Cgr <. B ,  C >. ) )  ->  x  =  y ) ) )
6137, 54, 60sylanbrc 648 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  /\  ( R  =/=  A  /\  B  =/=  C
) )  ->  E! x  e.  ( EE `  N ) ( AOutsideOf <. x ,  R >.  /\ 
<. A ,  x >.Cgr <. B ,  C >. ) )
6261ex 425 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( ( R  =/=  A  /\  B  =/=  C )  ->  E! x  e.  ( EE `  N ) ( AOutsideOf <. x ,  R >.  /\ 
<. A ,  x >.Cgr <. B ,  C >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   E!wreu 2518   <.cop 3584   class class class wbr 3963   ` cfv 4638   NNcn 9679   EEcee 23856    Btwn cbtwn 23857  Cgrccgr 23858  OutsideOfcoutsideof 24082
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-n0 9898  df-z 9957  df-uz 10163  df-rp 10287  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-ee 23859  df-btwn 23860  df-cgr 23861  df-ofs 23946  df-ifs 24002  df-cgr3 24003  df-colinear 24004  df-fs 24005  df-outsideof 24083
  Copyright terms: Public domain W3C validator