Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideoftr Unicode version

Theorem outsideoftr 24162
Description: Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideoftr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  ->  POutsideOf <. A ,  C >. ) )

Proof of Theorem outsideoftr
StepHypRef Expression
1 simpll 730 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  A  =/=  P )
2 simplr 731 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  B  =/=  P )
3 simprr 733 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  C  =/=  P )
41, 2, 33jca 1132 . . . 4  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  -> 
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )
5 simplr1 997 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  A  =/=  P
)
6 simplr3 999 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  C  =/=  P
)
7 df-3an 936 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. )  <->  ( (
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. )  /\  B  Btwn  <. P ,  C >. ) )
8 simp1 955 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  N  e.  NN )
9 simp3r 984 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  P  e.  ( EE `  N ) )
10 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
11 simp2r 982 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
12 simp3l 983 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
13 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  A  Btwn  <. P ,  B >. )
14 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  C >. )
158, 9, 10, 11, 12, 13, 14btwnexchand 24059 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  A  Btwn  <. P ,  C >. )
1615orcd 381 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  -> 
( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
177, 16sylan2br 462 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
1817expr 598 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( B  Btwn  <. P ,  C >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
19 simprlr 739 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  A  Btwn  <. P ,  B >. )
20 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  B >. )
21 btwnconn3 24136 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( ( A 
Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
228, 9, 10, 12, 11, 21syl122anc 1191 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( A 
Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2322adantr 451 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( ( A  Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2419, 20, 23mp2and 660 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
2524expr 598 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( C  Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2618, 25jaod 369 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2726expr 598 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  ( A  Btwn  <. P ,  B >.  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
28 simpll2 995 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. )  ->  B  =/=  P )
2928adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  =/=  P )
3029necomd 2530 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  P  =/=  B )
31 simprlr 739 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  A >. )
32 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  C >. )
33 btwnconn1 24134 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
348, 9, 11, 10, 12, 33syl122anc 1191 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
3534adantr 451 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
3630, 31, 32, 35mp3and 1280 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
3736expr 598 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( B  Btwn  <. P ,  C >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
38 df-3an 936 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. )  <->  ( (
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  C  Btwn  <. P ,  B >. ) )
39 simpr3 963 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  B >. )
40 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  B  Btwn  <. P ,  A >. )
418, 9, 12, 11, 10, 39, 40btwnexchand 24059 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  A >. )
4241olcd 382 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  -> 
( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
4338, 42sylan2br 462 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
4443expr 598 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( C  Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
4537, 44jaod 369 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
4645expr 598 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  ( B  Btwn  <. P ,  A >.  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
4727, 46jaod 369 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
4847imp32 422 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
495, 6, 483jca 1132 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  =/= 
P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
5049exp31 587 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  ->  (
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  -> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) ) )
514, 50syl5 28 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P
) )  ->  (
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  -> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) ) )
5251imp3a 420 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  =/= 
P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
53 broutsideof2 24155 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
548, 9, 10, 11, 53syl13anc 1184 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. A ,  B >. 
<->  ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
55 broutsideof2 24155 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. B ,  C >.  <-> 
( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
568, 9, 11, 12, 55syl13anc 1184 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. B ,  C >. 
<->  ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
5754, 56anbi12d 691 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  <->  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) ) )
58 df-3an 936 . . . . 5  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
59 df-3an 936 . . . . 5  |-  ( ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  <->  ( ( B  =/=  P  /\  C  =/=  P )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )
6058, 59anbi12i 678 . . . 4  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( ( B  =/= 
P  /\  C  =/=  P )  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
61 an4 797 . . . 4  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( ( B  =/= 
P  /\  C  =/=  P )  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
6260, 61bitr4i 243 . . 3  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
6357, 62syl6bb 252 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  <->  ( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) ) )
64 broutsideof2 24155 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  C >.  <-> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
658, 9, 10, 12, 64syl13anc 1184 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. A ,  C >. 
<->  ( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
6652, 63, 653imtr4d 259 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  ->  POutsideOf <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    e. wcel 1685    =/= wne 2447   <.cop 3644   class class class wbr 4024   ` cfv 5221   NNcn 9742   EEcee 23926    Btwn cbtwn 23927  OutsideOfcoutsideof 24152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-sum 12155  df-ee 23929  df-btwn 23930  df-cgr 23931  df-ofs 24016  df-ifs 24072  df-cgr3 24073  df-colinear 24074  df-fs 24075  df-outsideof 24153
  Copyright terms: Public domain W3C validator