MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 6181
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, F, y

Proof of Theorem ovelrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fnrnov 6178 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
21eleq2d 2471 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } ) )
3 ovex 6065 . . . . . 6  |-  ( x F y )  e. 
_V
4 eleq1 2464 . . . . . 6  |-  ( C  =  ( x F y )  ->  ( C  e.  _V  <->  ( x F y )  e. 
_V ) )
53, 4mpbiri 225 . . . . 5  |-  ( C  =  ( x F y )  ->  C  e.  _V )
65rexlimivw 2786 . . . 4  |-  ( E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
76rexlimivw 2786 . . 3  |-  ( E. x  e.  A  E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
8 eqeq1 2410 . . . 4  |-  ( z  =  C  ->  (
z  =  ( x F y )  <->  C  =  ( x F y ) ) )
982rexbidv 2709 . . 3  |-  ( z  =  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x F y )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
107, 9elab3 3049 . 2  |-  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) )
112, 10syl6bb 253 1  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   _Vcvv 2916    X. cxp 4835   ran crn 4838    Fn wfn 5408  (class class class)co 6040
This theorem is referenced by:  efgredlem  15334  efgcpbllemb  15342  gsumval3  15469  lecldbas  17237  blrnps  18391  blrn  18392  qdensere  18757  tgioo  18780  xrge0tsms  18818  ioorf  19418  ioorinv  19421  ioorcl  19422  dyaddisj  19441  dyadmax  19443  mbfid  19481  ismbfd  19485  hhssnv  22717  xrge0tsmsd  24176  iccllyscon  24890  rellyscon  24891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-ov 6043
  Copyright terms: Public domain W3C validator