MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 6080
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, F, y

Proof of Theorem ovelrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fnrnov 6077 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
21eleq2d 2425 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } ) )
3 ovex 5967 . . . . . 6  |-  ( x F y )  e. 
_V
4 eleq1 2418 . . . . . 6  |-  ( C  =  ( x F y )  ->  ( C  e.  _V  <->  ( x F y )  e. 
_V ) )
53, 4mpbiri 224 . . . . 5  |-  ( C  =  ( x F y )  ->  C  e.  _V )
65rexlimivw 2739 . . . 4  |-  ( E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
76rexlimivw 2739 . . 3  |-  ( E. x  e.  A  E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
8 eqeq1 2364 . . . 4  |-  ( z  =  C  ->  (
z  =  ( x F y )  <->  C  =  ( x F y ) ) )
982rexbidv 2662 . . 3  |-  ( z  =  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x F y )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
107, 9elab3 2997 . 2  |-  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) )
112, 10syl6bb 252 1  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1642    e. wcel 1710   {cab 2344   E.wrex 2620   _Vcvv 2864    X. cxp 4766   ran crn 4769    Fn wfn 5329  (class class class)co 5942
This theorem is referenced by:  efgredlem  15149  efgcpbllemb  15157  gsumval3  15284  lecldbas  17049  blrn  18058  qdensere  18375  tgioo  18398  xrge0tsms  18436  ioorf  19026  ioorinv  19029  ioorcl  19030  dyaddisj  19049  dyadmax  19051  mbfid  19089  ismbfd  19093  hhssnv  21949  xrge0tsmsd  23415  iccllyscon  24185  rellyscon  24186
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-iota 5298  df-fun 5336  df-fn 5337  df-fv 5342  df-ov 5945
  Copyright terms: Public domain W3C validator