MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovigg Structured version   Unicode version

Theorem ovigg 6230
Description: The value of an operation class abstraction. Compare ovig 6231. The condition  ( x  e.  R  /\  y  e.  S ) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
ovigg.4  |-  E* z ph
ovigg.5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
ovigg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
21eloprabga 6196 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
3 df-ov 6120 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
4 ovigg.5 . . . . 5  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
54fveq1i 5764 . . . 4  |-  ( F `
 <. A ,  B >. )  =  ( {
<. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )
63, 5eqtri 2463 . . 3  |-  ( A F B )  =  ( { <. <. x ,  y >. ,  z
>.  |  ph } `  <. A ,  B >. )
7 ovigg.4 . . . . 5  |-  E* z ph
87funoprab 6206 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  | 
ph }
9 funopfv 5802 . . . 4  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  ->  ( { <. <. x ,  y
>. ,  z >.  | 
ph } `  <. A ,  B >. )  =  C ) )
108, 9ax-mp 5 . . 3  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( { <. <.
x ,  y >. ,  z >.  |  ph } `  <. A ,  B >. )  =  C )
116, 10syl5eq 2487 . 2  |-  ( <. <. A ,  B >. ,  C >.  e.  { <. <.
x ,  y >. ,  z >.  |  ph }  ->  ( A F B )  =  C )
122, 11syl6bir 222 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps  ->  ( A F B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1654    e. wcel 1728   E*wmo 2289   <.cop 3846   Fun wfun 5483   ` cfv 5489  (class class class)co 6117   {coprab 6118
This theorem is referenced by:  ovig  6231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pr 4438
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-rab 2721  df-v 2967  df-sbc 3171  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-br 4244  df-opab 4298  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-iota 5453  df-fun 5491  df-fv 5497  df-ov 6120  df-oprab 6121
  Copyright terms: Public domain W3C validator