MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunnul Structured version   Unicode version

Theorem ovoliunnul 19395
Description: A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.)
Assertion
Ref Expression
ovoliunnul  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( vol * `  U_ n  e.  A  B )  =  0 )
Distinct variable group:    A, n
Allowed substitution hint:    B( n)

Proof of Theorem ovoliunnul
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4098 . . . . . 6  |-  ( A  =  (/)  ->  U_ n  e.  A  B  =  U_ n  e.  (/)  B )
2 0iun 4140 . . . . . 6  |-  U_ n  e.  (/)  B  =  (/)
31, 2syl6eq 2483 . . . . 5  |-  ( A  =  (/)  ->  U_ n  e.  A  B  =  (/) )
43fveq2d 5724 . . . 4  |-  ( A  =  (/)  ->  ( vol
* `  U_ n  e.  A  B )  =  ( vol * `  (/) ) )
5 ovol0 19381 . . . 4  |-  ( vol
* `  (/) )  =  0
64, 5syl6eq 2483 . . 3  |-  ( A  =  (/)  ->  ( vol
* `  U_ n  e.  A  B )  =  0 )
76a1i 11 . 2  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( A  =  (/)  ->  ( vol * `  U_ n  e.  A  B )  =  0 ) )
8 reldom 7107 . . . . . 6  |-  Rel  ~<_
98brrelexi 4910 . . . . 5  |-  ( A  ~<_  NN  ->  A  e.  _V )
109adantr 452 . . . 4  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  A  e.  _V )
11 0sdomg 7228 . . . 4  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
1210, 11syl 16 . . 3  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
13 fodomr 7250 . . . . . 6  |-  ( (
(/)  ~<  A  /\  A  ~<_  NN )  ->  E. f 
f : NN -onto-> A
)
1413expcom 425 . . . . 5  |-  ( A  ~<_  NN  ->  ( (/)  ~<  A  ->  E. f  f : NN -onto-> A ) )
1514adantr 452 . . . 4  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( (/)  ~<  A  ->  E. f  f : NN -onto-> A ) )
16 eliun 4089 . . . . . . . . . 10  |-  ( x  e.  U_ n  e.  A  B  <->  E. n  e.  A  x  e.  B )
17 nfv 1629 . . . . . . . . . . 11  |-  F/ n  f : NN -onto-> A
18 nfcv 2571 . . . . . . . . . . . . 13  |-  F/_ n NN
19 nfcsb1v 3275 . . . . . . . . . . . . 13  |-  F/_ n [_ ( f `  k
)  /  n ]_ B
2018, 19nfiun 4111 . . . . . . . . . . . 12  |-  F/_ n U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B
2120nfcri 2565 . . . . . . . . . . 11  |-  F/ n  x  e.  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B
22 foelrn 5880 . . . . . . . . . . . . 13  |-  ( ( f : NN -onto-> A  /\  n  e.  A
)  ->  E. k  e.  NN  n  =  ( f `  k ) )
2322ex 424 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( n  e.  A  ->  E. k  e.  NN  n  =  ( f `  k ) ) )
24 csbeq1a 3251 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( f `  k )  ->  B  =  [_ ( f `  k )  /  n ]_ B )
2524adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : NN -onto-> A  /\  n  =  (
f `  k )
)  ->  B  =  [_ ( f `  k
)  /  n ]_ B )
2625eleq2d 2502 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : NN -onto-> A  /\  n  =  (
f `  k )
)  ->  ( x  e.  B  <->  x  e.  [_ (
f `  k )  /  n ]_ B ) )
2726biimpd 199 . . . . . . . . . . . . . . . . 17  |-  ( ( f : NN -onto-> A  /\  n  =  (
f `  k )
)  ->  ( x  e.  B  ->  x  e. 
[_ ( f `  k )  /  n ]_ B ) )
2827impancom 428 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN -onto-> A  /\  x  e.  B
)  ->  ( n  =  ( f `  k )  ->  x  e.  [_ ( f `  k )  /  n ]_ B ) )
2928reximdv 2809 . . . . . . . . . . . . . . 15  |-  ( ( f : NN -onto-> A  /\  x  e.  B
)  ->  ( E. k  e.  NN  n  =  ( f `  k )  ->  E. k  e.  NN  x  e.  [_ ( f `  k
)  /  n ]_ B ) )
30 eliun 4089 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B  <->  E. k  e.  NN  x  e.  [_ ( f `  k
)  /  n ]_ B )
3129, 30syl6ibr 219 . . . . . . . . . . . . . 14  |-  ( ( f : NN -onto-> A  /\  x  e.  B
)  ->  ( E. k  e.  NN  n  =  ( f `  k )  ->  x  e.  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B ) )
3231ex 424 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
( x  e.  B  ->  ( E. k  e.  NN  n  =  ( f `  k )  ->  x  e.  U_ k  e.  NN  [_ (
f `  k )  /  n ]_ B ) ) )
3332com23 74 . . . . . . . . . . . 12  |-  ( f : NN -onto-> A  -> 
( E. k  e.  NN  n  =  ( f `  k )  ->  ( x  e.  B  ->  x  e.  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B ) ) )
3423, 33syld 42 . . . . . . . . . . 11  |-  ( f : NN -onto-> A  -> 
( n  e.  A  ->  ( x  e.  B  ->  x  e.  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) ) )
3517, 21, 34rexlimd 2819 . . . . . . . . . 10  |-  ( f : NN -onto-> A  -> 
( E. n  e.  A  x  e.  B  ->  x  e.  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) )
3616, 35syl5bi 209 . . . . . . . . 9  |-  ( f : NN -onto-> A  -> 
( x  e.  U_ n  e.  A  B  ->  x  e.  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) )
3736ssrdv 3346 . . . . . . . 8  |-  ( f : NN -onto-> A  ->  U_ n  e.  A  B  C_  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )
3837adantl 453 . . . . . . 7  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  U_ n  e.  A  B  C_  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )
39 fof 5645 . . . . . . . . . . . . 13  |-  ( f : NN -onto-> A  -> 
f : NN --> A )
4039adantl 453 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  f : NN --> A )
4140ffvelrnda 5862 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  (
f `  k )  e.  A )
42 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )
43 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ n RR
4419, 43nfss 3333 . . . . . . . . . . . . 13  |-  F/ n [_ ( f `  k
)  /  n ]_ B  C_  RR
45 nfcv 2571 . . . . . . . . . . . . . . 15  |-  F/_ n vol *
4645, 19nffv 5727 . . . . . . . . . . . . . 14  |-  F/_ n
( vol * `  [_ ( f `  k
)  /  n ]_ B )
4746nfeq1 2580 . . . . . . . . . . . . 13  |-  F/ n
( vol * `  [_ ( f `  k
)  /  n ]_ B )  =  0
4844, 47nfan 1846 . . . . . . . . . . . 12  |-  F/ n
( [_ ( f `  k )  /  n ]_ B  C_  RR  /\  ( vol * `  [_ (
f `  k )  /  n ]_ B )  =  0 )
4924sseq1d 3367 . . . . . . . . . . . . 13  |-  ( n  =  ( f `  k )  ->  ( B  C_  RR  <->  [_ ( f `
 k )  /  n ]_ B  C_  RR ) )
5024fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( n  =  ( f `  k )  ->  ( vol * `  B )  =  ( vol * `  [_ ( f `  k )  /  n ]_ B ) )
5150eqeq1d 2443 . . . . . . . . . . . . 13  |-  ( n  =  ( f `  k )  ->  (
( vol * `  B )  =  0  <-> 
( vol * `  [_ ( f `  k
)  /  n ]_ B )  =  0 ) )
5249, 51anbi12d 692 . . . . . . . . . . . 12  |-  ( n  =  ( f `  k )  ->  (
( B  C_  RR  /\  ( vol * `  B )  =  0 )  <->  ( [_ (
f `  k )  /  n ]_ B  C_  RR  /\  ( vol * `  [_ ( f `  k )  /  n ]_ B )  =  0 ) ) )
5348, 52rspc 3038 . . . . . . . . . . 11  |-  ( ( f `  k )  e.  A  ->  ( A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 )  ->  ( [_ (
f `  k )  /  n ]_ B  C_  RR  /\  ( vol * `  [_ ( f `  k )  /  n ]_ B )  =  0 ) ) )
5441, 42, 53sylc 58 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  ( [_ ( f `  k
)  /  n ]_ B  C_  RR  /\  ( vol * `  [_ (
f `  k )  /  n ]_ B )  =  0 ) )
5554simpld 446 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  [_ (
f `  k )  /  n ]_ B  C_  RR )
5655ralrimiva 2781 . . . . . . . 8  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  A. k  e.  NN  [_ ( f `
 k )  /  n ]_ B  C_  RR )
57 iunss 4124 . . . . . . . 8  |-  ( U_ k  e.  NN  [_ (
f `  k )  /  n ]_ B  C_  RR 
<-> 
A. k  e.  NN  [_ ( f `  k
)  /  n ]_ B  C_  RR )
5856, 57sylibr 204 . . . . . . 7  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B  C_  RR )
59 eqid 2435 . . . . . . . . . 10  |-  seq  1
(  +  ,  ( k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) ) )  =  seq  1 (  +  , 
( k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) ) )
60 eqid 2435 . . . . . . . . . 10  |-  ( k  e.  NN  |->  ( vol
* `  [_ ( f `
 k )  /  n ]_ B ) )  =  ( k  e.  NN  |->  ( vol * `  [_ ( f `  k )  /  n ]_ B ) )
6154simprd 450 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  ( vol * `  [_ (
f `  k )  /  n ]_ B )  =  0 )
62 0re 9083 . . . . . . . . . . 11  |-  0  e.  RR
6361, 62syl6eqel 2523 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  NN 
/\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B
)  =  0 ) )  /\  f : NN -onto-> A )  /\  k  e.  NN )  ->  ( vol * `  [_ (
f `  k )  /  n ]_ B )  e.  RR )
6461mpteq2dva 4287 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  (
k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) )  =  ( k  e.  NN  |->  0 ) )
65 fconstmpt 4913 . . . . . . . . . . . . . 14  |-  ( NN 
X.  { 0 } )  =  ( k  e.  NN  |->  0 )
66 nnuz 10513 . . . . . . . . . . . . . . 15  |-  NN  =  ( ZZ>= `  1 )
6766xpeq1i 4890 . . . . . . . . . . . . . 14  |-  ( NN 
X.  { 0 } )  =  ( (
ZZ>= `  1 )  X. 
{ 0 } )
6865, 67eqtr3i 2457 . . . . . . . . . . . . 13  |-  ( k  e.  NN  |->  0 )  =  ( ( ZZ>= ` 
1 )  X.  {
0 } )
6964, 68syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  (
k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) )  =  ( (
ZZ>= `  1 )  X. 
{ 0 } ) )
7069seqeq3d 11323 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) ) )  =  seq  1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) ) )
71 1z 10303 . . . . . . . . . . . 12  |-  1  e.  ZZ
72 serclim0 12363 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  seq  1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  ~~>  0 )
73 seqex 11317 . . . . . . . . . . . . 13  |-  seq  1
(  +  ,  ( ( ZZ>= `  1 )  X.  { 0 } ) )  e.  _V
74 c0ex 9077 . . . . . . . . . . . . 13  |-  0  e.  _V
7573, 74breldm 5066 . . . . . . . . . . . 12  |-  (  seq  1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  ~~>  0  ->  seq  1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  e. 
dom 
~~>  )
7671, 72, 75mp2b 10 . . . . . . . . . . 11  |-  seq  1
(  +  ,  ( ( ZZ>= `  1 )  X.  { 0 } ) )  e.  dom  ~~>
7770, 76syl6eqel 2523 . . . . . . . . . 10  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  seq  1 (  +  , 
( k  e.  NN  |->  ( vol * `  [_ (
f `  k )  /  n ]_ B ) ) )  e.  dom  ~~>  )
7859, 60, 55, 63, 77ovoliun2 19394 . . . . . . . . 9  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  ( vol * `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )  <_  sum_ k  e.  NN  ( vol * `  [_ (
f `  k )  /  n ]_ B ) )
7961sumeq2dv 12489 . . . . . . . . . 10  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  sum_ k  e.  NN  ( vol * `  [_ ( f `  k )  /  n ]_ B )  =  sum_ k  e.  NN  0
)
8066eqimssi 3394 . . . . . . . . . . . 12  |-  NN  C_  ( ZZ>= `  1 )
8180orci 380 . . . . . . . . . . 11  |-  ( NN  C_  ( ZZ>= `  1 )  \/  NN  e.  Fin )
82 sumz 12508 . . . . . . . . . . 11  |-  ( ( NN  C_  ( ZZ>= ` 
1 )  \/  NN  e.  Fin )  ->  sum_ k  e.  NN  0  =  0 )
8381, 82ax-mp 8 . . . . . . . . . 10  |-  sum_ k  e.  NN  0  =  0
8479, 83syl6eq 2483 . . . . . . . . 9  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  sum_ k  e.  NN  ( vol * `  [_ ( f `  k )  /  n ]_ B )  =  0 )
8578, 84breqtrd 4228 . . . . . . . 8  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  ( vol * `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )  <_ 
0 )
86 ovolge0 19369 . . . . . . . . 9  |-  ( U_ k  e.  NN  [_ (
f `  k )  /  n ]_ B  C_  RR  ->  0  <_  ( vol * `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) )
8758, 86syl 16 . . . . . . . 8  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  0  <_  ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B ) )
88 ovolcl 19366 . . . . . . . . . 10  |-  ( U_ k  e.  NN  [_ (
f `  k )  /  n ]_ B  C_  RR  ->  ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  e.  RR* )
8958, 88syl 16 . . . . . . . . 9  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  ( vol * `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )  e. 
RR* )
90 0xr 9123 . . . . . . . . 9  |-  0  e.  RR*
91 xrletri3 10737 . . . . . . . . 9  |-  ( ( ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  e.  RR*  /\  0  e.  RR* )  ->  ( ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  =  0  <-> 
( ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  <_  0  /\  0  <_  ( vol
* `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) ) ) )
9289, 90, 91sylancl 644 . . . . . . . 8  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  (
( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  =  0  <-> 
( ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  <_  0  /\  0  <_  ( vol
* `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B ) ) ) )
9385, 87, 92mpbir2and 889 . . . . . . 7  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  ( vol * `  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B )  =  0 )
94 ovolssnul 19375 . . . . . . 7  |-  ( (
U_ n  e.  A  B  C_  U_ k  e.  NN  [_ ( f `
 k )  /  n ]_ B  /\  U_ k  e.  NN  [_ (
f `  k )  /  n ]_ B  C_  RR  /\  ( vol * `  U_ k  e.  NN  [_ ( f `  k
)  /  n ]_ B )  =  0 )  ->  ( vol * `
 U_ n  e.  A  B )  =  0 )
9538, 58, 93, 94syl3anc 1184 . . . . . 6  |-  ( ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol * `  B )  =  0 ) )  /\  f : NN -onto-> A )  ->  ( vol * `  U_ n  e.  A  B )  =  0 )
9695ex 424 . . . . 5  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( f : NN -onto-> A  ->  ( vol
* `  U_ n  e.  A  B )  =  0 ) )
9796exlimdv 1646 . . . 4  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( E. f 
f : NN -onto-> A  ->  ( vol * `  U_ n  e.  A  B
)  =  0 ) )
9815, 97syld 42 . . 3  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( (/)  ~<  A  -> 
( vol * `  U_ n  e.  A  B
)  =  0 ) )
9912, 98sylbird 227 . 2  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( A  =/=  (/)  ->  ( vol * `  U_ n  e.  A  B )  =  0 ) )
1007, 99pm2.61dne 2675 1  |-  ( ( A  ~<_  NN  /\  A. n  e.  A  ( B  C_  RR  /\  ( vol
* `  B )  =  0 ) )  ->  ( vol * `  U_ n  e.  A  B )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948   [_csb 3243    C_ wss 3312   (/)c0 3620   {csn 3806   U_ciun 4085   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   dom cdm 4870   -->wf 5442   -onto->wfo 5444   ` cfv 5446    ~<_ cdom 7099    ~< csdm 7100   Fincfn 7101   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985   RR*cxr 9111    <_ cle 9113   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480    seq cseq 11315    ~~> cli 12270   sum_csu 12471   vol *covol 19351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xadd 10703  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-rlim 12275  df-sum 12472  df-xmet 16687  df-met 16688  df-ovol 19353
  Copyright terms: Public domain W3C validator