Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Unicode version

Theorem paddidm 29309
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddidm  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )

Proof of Theorem paddidm
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  K  e.  B )
2 eqid 2284 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . . 6  |-  S  =  ( PSubSp `  K )
42, 3psubssat 29222 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
5 eqid 2284 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
6 eqid 2284 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
7 paddidm.p . . . . . 6  |-  .+  =  ( + P `  K
)
85, 6, 2, 7elpadd 29267 . . . . 5  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  ( p  e.  ( X  .+  X
)  <->  ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
91, 4, 4, 8syl3anc 1182 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  <-> 
( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
10 pm1.2 499 . . . . . 6  |-  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X )
1110a1i 10 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X ) )
125, 6, 2, 3psubspi 29215 . . . . . . 7  |-  ( ( ( K  e.  B  /\  X  e.  S  /\  p  e.  ( Atoms `  K ) )  /\  E. q  e.  X  E. r  e.  X  p ( le
`  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
)
13123exp1 1167 . . . . . 6  |-  ( K  e.  B  ->  ( X  e.  S  ->  ( p  e.  ( Atoms `  K )  ->  ( E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  X )
) ) )
1413imp4b 573 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
) )
1511, 14jaod 369 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) )  ->  p  e.  X
) )
169, 15sylbid 206 . . 3  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  ->  p  e.  X
) )
1716ssrdv 3186 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  C_  X )
182, 7sspadd1 29283 . . 3  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  X  C_  ( X  .+  X ) )
191, 4, 4, 18syl3anc 1182 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( X  .+  X ) )
2017, 19eqssd 3197 1  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1685   E.wrex 2545    C_ wss 3153   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   lecple 13211   joincjn 14074   Atomscatm 28732   PSubSpcpsubsp 28964   + Pcpadd 29263
This theorem is referenced by:  paddclN  29310  paddss  29313  pmod1i  29316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-psubsp 28971  df-padd 29264
  Copyright terms: Public domain W3C validator