Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Unicode version

Theorem paddidm 30327
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s  |-  S  =  ( PSubSp `  K )
paddidm.p  |-  .+  =  ( + P `  K
)
Assertion
Ref Expression
paddidm  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )

Proof of Theorem paddidm
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  K  e.  B )
2 eqid 2408 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 paddidm.s . . . . . 6  |-  S  =  ( PSubSp `  K )
42, 3psubssat 30240 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( Atoms `  K ) )
5 eqid 2408 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
6 eqid 2408 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
7 paddidm.p . . . . . 6  |-  .+  =  ( + P `  K
)
85, 6, 2, 7elpadd 30285 . . . . 5  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  ( p  e.  ( X  .+  X
)  <->  ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
91, 4, 4, 8syl3anc 1184 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  <-> 
( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) ) ) )
10 pm1.2 500 . . . . . 6  |-  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X )
1110a1i 11 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  X  \/  p  e.  X )  ->  p  e.  X ) )
125, 6, 2, 3psubspi 30233 . . . . . . 7  |-  ( ( ( K  e.  B  /\  X  e.  S  /\  p  e.  ( Atoms `  K ) )  /\  E. q  e.  X  E. r  e.  X  p ( le
`  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
)
13123exp1 1169 . . . . . 6  |-  ( K  e.  B  ->  ( X  e.  S  ->  ( p  e.  ( Atoms `  K )  ->  ( E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r )  ->  p  e.  X )
) ) )
1413imp4b 574 . . . . 5  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p ( le `  K ) ( q ( join `  K
) r ) )  ->  p  e.  X
) )
1511, 14jaod 370 . . . 4  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( ( ( p  e.  X  \/  p  e.  X )  \/  (
p  e.  ( Atoms `  K )  /\  E. q  e.  X  E. r  e.  X  p
( le `  K
) ( q (
join `  K )
r ) ) )  ->  p  e.  X
) )
169, 15sylbid 207 . . 3  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( p  e.  ( X  .+  X )  ->  p  e.  X
) )
1716ssrdv 3318 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  C_  X )
182, 7sspadd1 30301 . . 3  |-  ( ( K  e.  B  /\  X  C_  ( Atoms `  K
)  /\  X  C_  ( Atoms `  K ) )  ->  X  C_  ( X  .+  X ) )
191, 4, 4, 18syl3anc 1184 . 2  |-  ( ( K  e.  B  /\  X  e.  S )  ->  X  C_  ( X  .+  X ) )
2017, 19eqssd 3329 1  |-  ( ( K  e.  B  /\  X  e.  S )  ->  ( X  .+  X
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2671    C_ wss 3284   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   lecple 13495   joincjn 14360   Atomscatm 29750   PSubSpcpsubsp 29982   + Pcpadd 30281
This theorem is referenced by:  paddclN  30328  paddss  30331  pmod1i  30334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-psubsp 29989  df-padd 30282
  Copyright terms: Public domain W3C validator