MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Unicode version

Theorem padicabvcxp 21194
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
Assertion
Ref Expression
padicabvcxp  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^ c  R
) )  e.  A
)
Distinct variable groups:    x, q,
y    y, J    A, q, x, y    x, Q, y    P, q, x, y    R, q, y
Allowed substitution hints:    Q( q)    R( x)    J( x, q)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
21padicval 21179 . . . . . 6  |-  ( ( P  e.  Prime  /\  y  e.  QQ )  ->  (
( J `  P
) `  y )  =  if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) ) )
32adantlr 696 . . . . 5  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( J `
 P ) `  y )  =  if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) ) )
43oveq1d 6036 . . . 4  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( ( J `  P ) `
 y )  ^ c  R )  =  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  ^ c  R
) )
5 oveq1 6028 . . . . . . 7  |-  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  =  0  -> 
( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y
) ) )  ^ c  R )  =  ( 0  ^ c  R
) )
6 oveq1 6028 . . . . . . 7  |-  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  =  ( P ^ -u ( P 
pCnt  y ) )  ->  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  y ) ) )  ^ c  R
)  =  ( ( P ^ -u ( P  pCnt  y ) )  ^ c  R ) )
75, 6ifsb 3692 . . . . . 6  |-  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  y ) ) )  ^ c  R
)  =  if ( y  =  0 ,  ( 0  ^ c  R ) ,  ( ( P ^ -u ( P  pCnt  y ) )  ^ c  R ) )
8 rpre 10551 . . . . . . . . . . 11  |-  ( R  e.  RR+  ->  R  e.  RR )
98adantl 453 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  e.  RR )
109recnd 9048 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  e.  CC )
11 rpne0 10560 . . . . . . . . . 10  |-  ( R  e.  RR+  ->  R  =/=  0 )
1211adantl 453 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  R  =/=  0 )
1310, 120cxpd 20469 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
0  ^ c  R
)  =  0 )
1413adantr 452 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( 0  ^ c  R )  =  0 )
1514ifeq1d 3697 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  if ( y  =  0 ,  ( 0  ^ c  R
) ,  ( ( P ^ -u ( P  pCnt  y ) )  ^ c  R ) )  =  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P  pCnt  y ) )  ^ c  R ) ) )
167, 15syl5eq 2432 . . . . 5  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  y ) ) )  ^ c  R
)  =  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P  pCnt  y ) )  ^ c  R ) ) )
17 df-ne 2553 . . . . . . 7  |-  ( y  =/=  0  <->  -.  y  =  0 )
18 pcqcl 13158 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
1918adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
2019zcnd 10309 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  CC )
2110adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  R  e.  CC )
22 mulneg12 9405 . . . . . . . . . . . . 13  |-  ( ( ( P  pCnt  y
)  e.  CC  /\  R  e.  CC )  ->  ( -u ( P 
pCnt  y )  x.  R )  =  ( ( P  pCnt  y
)  x.  -u R
) )
2320, 21, 22syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( -u ( P  pCnt  y )  x.  R )  =  ( ( P  pCnt  y
)  x.  -u R
) )
2421negcld 9331 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u R  e.  CC )
2520, 24mulcomd 9043 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  pCnt  y )  x.  -u R )  =  (
-u R  x.  ( P  pCnt  y ) ) )
2623, 25eqtrd 2420 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( -u ( P  pCnt  y )  x.  R )  =  (
-u R  x.  ( P  pCnt  y ) ) )
2726oveq2d 6037 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  ( -u ( P  pCnt  y )  x.  R ) )  =  ( P  ^ c 
( -u R  x.  ( P  pCnt  y ) ) ) )
28 prmuz2 13025 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2928adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  ( ZZ>= `  2 )
)
30 eluz2b2 10481 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
3129, 30sylib 189 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  e.  NN  /\  1  <  P ) )
3231simpld 446 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  NN )
3332nnrpd 10580 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  RR+ )
3433adantr 452 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  e.  RR+ )
3519znegcld 10310 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u ( P 
pCnt  y )  e.  ZZ )
3635zred 10308 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u ( P 
pCnt  y )  e.  RR )
3734, 36, 21cxpmuld 20493 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  ( -u ( P  pCnt  y )  x.  R ) )  =  ( ( P  ^ c  -u ( P  pCnt  y ) )  ^ c  R ) )
389renegcld 9397 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  -u R  e.  RR )
3938adantr 452 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  -u R  e.  RR )
4034, 39, 20cxpmuld 20493 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  ( -u R  x.  ( P  pCnt  y
) ) )  =  ( ( P  ^ c  -u R )  ^ c  ( P  pCnt  y ) ) )
4127, 37, 403eqtr3d 2428 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^ c  -u ( P  pCnt  y ) )  ^ c  R )  =  ( ( P  ^ c  -u R
)  ^ c  ( P  pCnt  y )
) )
4232nnred 9948 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  RR )
4342recnd 9048 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  e.  CC )
4443adantr 452 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  e.  CC )
4532nnne0d 9977 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  P  =/=  0 )
4645adantr 452 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  P  =/=  0 )
4744, 46, 35cxpexpzd 20470 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  -u ( P 
pCnt  y ) )  =  ( P ^ -u ( P  pCnt  y
) ) )
4847oveq1d 6036 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^ c  -u ( P  pCnt  y ) )  ^ c  R )  =  ( ( P ^ -u ( P 
pCnt  y ) )  ^ c  R ) )
4933, 38rpcxpcld 20489 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  -u R
)  e.  RR+ )
5049adantr 452 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  -u R )  e.  RR+ )
5150rpcnd 10583 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  -u R )  e.  CC )
52 rpne0 10560 . . . . . . . . . . 11  |-  ( ( P  ^ c  -u R )  e.  RR+  ->  ( P  ^ c  -u R )  =/=  0
)
5350, 52syl 16 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( P  ^ c  -u R )  =/=  0 )
5451, 53, 19cxpexpzd 20470 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P  ^ c  -u R
)  ^ c  ( P  pCnt  y )
)  =  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) )
5541, 48, 543eqtr3d 2428 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  ( y  e.  QQ  /\  y  =/=  0 ) )  ->  ( ( P ^ -u ( P 
pCnt  y ) )  ^ c  R )  =  ( ( P  ^ c  -u R
) ^ ( P 
pCnt  y ) ) )
5655anassrs 630 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  /\  y  =/=  0
)  ->  ( ( P ^ -u ( P 
pCnt  y ) )  ^ c  R )  =  ( ( P  ^ c  -u R
) ^ ( P 
pCnt  y ) ) )
5717, 56sylan2br 463 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  /\  -.  y  =  0 )  ->  (
( P ^ -u ( P  pCnt  y ) )  ^ c  R )  =  ( ( P  ^ c  -u R
) ^ ( P 
pCnt  y ) ) )
5857ifeq2da 3709 . . . . 5  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  if ( y  =  0 ,  0 ,  ( ( P ^ -u ( P 
pCnt  y ) )  ^ c  R ) )  =  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )
5916, 58eqtrd 2420 . . . 4  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( if ( y  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  y ) ) )  ^ c  R
)  =  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )
604, 59eqtrd 2420 . . 3  |-  ( ( ( P  e.  Prime  /\  R  e.  RR+ )  /\  y  e.  QQ )  ->  ( ( ( J `  P ) `
 y )  ^ c  R )  =  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )
6160mpteq2dva 4237 . 2  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^ c  R
) )  =  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) ) )
62 rpre 10551 . . . . 5  |-  ( ( P  ^ c  -u R )  e.  RR+  ->  ( P  ^ c  -u R )  e.  RR )
6349, 62syl 16 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  -u R
)  e.  RR )
64 rpgt0 10556 . . . . 5  |-  ( ( P  ^ c  -u R )  e.  RR+  ->  0  <  ( P  ^ c  -u R
) )
6549, 64syl 16 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  <  ( P  ^ c  -u R ) )
66 rpgt0 10556 . . . . . . . 8  |-  ( R  e.  RR+  ->  0  < 
R )
6766adantl 453 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  <  R )
689lt0neg2d 9530 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
0  <  R  <->  -u R  <  0 ) )
6967, 68mpbid 202 . . . . . 6  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  -u R  <  0 )
7031simprd 450 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  1  <  P )
71 0re 9025 . . . . . . . 8  |-  0  e.  RR
7271a1i 11 . . . . . . 7  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  0  e.  RR )
7342, 70, 38, 72cxpltd 20478 . . . . . 6  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( -u R  <  0  <->  ( P  ^ c  -u R
)  <  ( P  ^ c  0 ) ) )
7469, 73mpbid 202 . . . . 5  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  -u R
)  <  ( P  ^ c  0 ) )
7543cxp0d 20464 . . . . 5  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  0 )  =  1 )
7674, 75breqtrd 4178 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  -u R
)  <  1 )
77 0xr 9065 . . . . 5  |-  0  e.  RR*
78 1re 9024 . . . . . 6  |-  1  e.  RR
7978rexri 9071 . . . . 5  |-  1  e.  RR*
80 elioo2 10890 . . . . 5  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( P  ^ c  -u R )  e.  ( 0 (,) 1 )  <-> 
( ( P  ^ c  -u R )  e.  RR  /\  0  < 
( P  ^ c  -u R )  /\  ( P  ^ c  -u R
)  <  1 ) ) )
8177, 79, 80mp2an 654 . . . 4  |-  ( ( P  ^ c  -u R )  e.  ( 0 (,) 1 )  <-> 
( ( P  ^ c  -u R )  e.  RR  /\  0  < 
( P  ^ c  -u R )  /\  ( P  ^ c  -u R
)  <  1 ) )
8263, 65, 76, 81syl3anbrc 1138 . . 3  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  ( P  ^ c  -u R
)  e.  ( 0 (,) 1 ) )
83 qrng.q . . . 4  |-  Q  =  (flds  QQ )
84 qabsabv.a . . . 4  |-  A  =  (AbsVal `  Q )
85 eqid 2388 . . . 4  |-  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )  =  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )
8683, 84, 85padicabv 21192 . . 3  |-  ( ( P  e.  Prime  /\  ( P  ^ c  -u R
)  e.  ( 0 (,) 1 ) )  ->  ( y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R
) ^ ( P 
pCnt  y ) ) ) )  e.  A
)
8782, 86syldan 457 . 2  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  if ( y  =  0 ,  0 ,  ( ( P  ^ c  -u R ) ^ ( P  pCnt  y ) ) ) )  e.  A
)
8861, 87eqeltrd 2462 1  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^ c  R
) )  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   ifcif 3683   class class class wbr 4154    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    x. cmul 8929   RR*cxr 9053    < clt 9054   -ucneg 9225   NNcn 9933   2c2 9982   ZZcz 10215   ZZ>=cuz 10421   QQcq 10507   RR+crp 10545   (,)cioo 10849   ^cexp 11310   Primecprime 13007    pCnt cpc 13138   ↾s cress 13398  AbsValcabv 15832  ℂfldccnfld 16627    ^ c ccxp 20321
This theorem is referenced by:  ostth3  21200  ostth  21201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-tpos 6416  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-gcd 12935  df-prm 13008  df-pc 13139  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-grp 14740  df-minusg 14741  df-mulg 14743  df-subg 14869  df-cntz 15044  df-cmn 15342  df-mgp 15577  df-rng 15591  df-cring 15592  df-ur 15593  df-oppr 15656  df-dvdsr 15674  df-unit 15675  df-invr 15705  df-dvr 15716  df-drng 15765  df-subrg 15794  df-abv 15833  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cxp 20323
  Copyright terms: Public domain W3C validator