MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd Unicode version

Theorem pcadd 12931
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcadd.1  |-  ( ph  ->  P  e.  Prime )
pcadd.2  |-  ( ph  ->  A  e.  QQ )
pcadd.3  |-  ( ph  ->  B  e.  QQ )
pcadd.4  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Assertion
Ref Expression
pcadd  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem pcadd
StepHypRef Expression
1 pcadd.2 . . 3  |-  ( ph  ->  A  e.  QQ )
2 elq 10313 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 190 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 pcadd.3 . . 3  |-  ( ph  ->  B  e.  QQ )
5 elq 10313 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 190 . 2  |-  ( ph  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 pcadd.1 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
8 pcxcl 12907 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
97, 1, 8syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  A
)  e.  RR* )
10 xrleid 10479 . . . . . . 7  |-  ( ( P  pCnt  A )  e.  RR*  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
119, 10syl 17 . . . . . 6  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  A ) )
1211adantr 453 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  A
) )
13 oveq2 5827 . . . . . . 7  |-  ( B  =  0  ->  ( A  +  B )  =  ( A  + 
0 ) )
14 qcn 10325 . . . . . . . . 9  |-  ( A  e.  QQ  ->  A  e.  CC )
151, 14syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1615addid1d 9007 . . . . . . 7  |-  ( ph  ->  ( A  +  0 )  =  A )
1713, 16sylan9eqr 2338 . . . . . 6  |-  ( (
ph  /\  B  = 
0 )  ->  ( A  +  B )  =  A )
1817oveq2d 5835 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  ( A  +  B ) )  =  ( P  pCnt  A
) )
1912, 18breqtrrd 4050 . . . 4  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) )
2019a1d 24 . . 3  |-  ( (
ph  /\  B  = 
0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
21 reeanv 2708 . . . 4  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
22 reeanv 2708 . . . . . 6  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
237ad3antrrr 712 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  Prime )
24 prmnn 12755 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  NN )
26 simplrl 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  ZZ )
27 simprrl 742 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( x  /  y ) )
284ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  QQ )
29 simpllr 737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =/=  0 )
30 pcqcl 12903 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3123, 28, 29, 30syl12anc 1182 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3231zred 10112 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  RR )
33 ltpnf 10458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  <  +oo )
34 rexr 8872 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  e.  RR* )
35 pnfxr 10450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  +oo  e.  RR*
36 xrltnle 8886 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  pCnt  B
)  e.  RR*  /\  +oo  e.  RR* )  ->  (
( P  pCnt  B
)  <  +oo  <->  -.  +oo  <_  ( P  pCnt  B )
) )
3734, 35, 36sylancl 645 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( ( P  pCnt  B )  <  +oo 
<->  -.  +oo  <_  ( P 
pCnt  B ) ) )
3833, 37mpbid 203 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  pCnt  B )  e.  RR  ->  -.  +oo  <_  ( P  pCnt  B )
)
3932, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  +oo  <_  ( P  pCnt  B ) )
40 pc0 12901 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = 
+oo )
4123, 40syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  0
)  =  +oo )
4241breq1d 4034 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  0 )  <_  ( P  pCnt  B )  <->  +oo  <_  ( P  pCnt  B ) ) )
4339, 42mtbird 294 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  ( P  pCnt  0
)  <_  ( P  pCnt  B ) )
44 pcadd.4 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
4544ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
46 oveq2 5827 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4746breq1d 4034 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  =  0  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  <->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4845, 47syl5ibcom 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  =  0  ->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4948necon3bd 2484 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( -.  ( P 
pCnt  0 )  <_ 
( P  pCnt  B
)  ->  A  =/=  0 ) )
5043, 49mpd 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =/=  0 )
5127, 50eqnetrrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  y
)  =/=  0 )
52 simprll 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  NN )
5352nncnd 9757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  CC )
5452nnne0d 9785 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  =/=  0 )
5553, 54div0d 9530 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  y
)  =  0 )
56 oveq1 5826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
5756eqeq1d 2292 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
5855, 57syl5ibrcom 215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
5958necon3d 2485 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
6051, 59mpd 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  =/=  0 )
61 pczcl 12895 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
6223, 26, 60, 61syl12anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
6325, 62nnexpcld 11260 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  NN )
6463nncnd 9757 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  CC )
6564, 53mulcomd 8851 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  x.  y
)  =  ( y  x.  ( P ^
( P  pCnt  x
) ) ) )
6665oveq2d 5835 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( ( P ^ ( P 
pCnt  x ) )  x.  y ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
6726zcnd 10113 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  CC )
6823, 52pccld 12897 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6925, 68nnexpcld 11260 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  NN )
7069nncnd 9757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  CC )
7163nnne0d 9785 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  =/=  0 )
7269nnne0d 9785 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  =/=  0 )
7367, 64, 53, 70, 71, 72, 54divdivdivd 9578 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( ( P ^
( P  pCnt  x
) )  x.  y
) ) )
7427oveq2d 5835 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( P 
pCnt  ( x  / 
y ) ) )
75 pcdiv 12899 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7623, 26, 60, 52, 75syl121anc 1189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7774, 76eqtrd 2316 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7877oveq2d 5835 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( P ^
( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) ) )
7925nncnd 9757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  CC )
8025nnne0d 9785 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  =/=  0 )
8168nn0zd 10110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  ZZ )
8262nn0zd 10110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  ZZ )
8379, 80, 81, 82expsubd 11250 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  x
)  -  ( P 
pCnt  y ) ) )  =  ( ( P ^ ( P 
pCnt  x ) )  / 
( P ^ ( P  pCnt  y ) ) ) )
8478, 83eqtrd 2316 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( ( P ^ ( P  pCnt  x ) )  /  ( P ^ ( P  pCnt  y ) ) ) )
8584oveq2d 5835 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) ) )
8627oveq1d 5834 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  /  y )  / 
( ( P ^
( P  pCnt  x
) )  /  ( P ^ ( P  pCnt  y ) ) ) ) )
8767, 53, 64, 70, 54, 72, 71divdivdivd 9578 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( y  x.  ( P ^ ( P  pCnt  x ) ) ) ) )
8885, 86, 873eqtrd 2320 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
8966, 73, 883eqtr4d 2326 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
9089oveq2d 5835 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  A ) )  x.  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
911ad3antrrr 712 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  QQ )
9291, 14syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  CC )
93 pcqcl 12903 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9423, 91, 50, 93syl12anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9579, 80, 94expclzd 11244 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  CC )
9679, 80, 94expne0d 11245 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =/=  0 )
9792, 95, 96divcan2d 9533 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
9890, 97eqtr2d 2317 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( ( P ^ ( P  pCnt  A ) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) ) )
99 simplrr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  ZZ )
100 simprrr 743 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( z  /  w ) )
101100, 29eqnetrrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  w
)  =/=  0 )
102 simprlr 741 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  NN )
103102nncnd 9757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  CC )
104102nnne0d 9785 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  =/=  0 )
105103, 104div0d 9530 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  w
)  =  0 )
106 oveq1 5826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
107106eqeq1d 2292 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
108105, 107syl5ibrcom 215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
109108necon3d 2485 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
110101, 109mpd 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  =/=  0 )
111 pczcl 12895 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
11223, 99, 110, 111syl12anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
11325, 112nnexpcld 11260 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  NN )
114113nncnd 9757 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  CC )
115114, 103mulcomd 8851 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  x.  w
)  =  ( w  x.  ( P ^
( P  pCnt  z
) ) ) )
116115oveq2d 5835 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( ( P ^ ( P 
pCnt  z ) )  x.  w ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
11799zcnd 10113 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  CC )
11823, 102pccld 12897 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
11925, 118nnexpcld 11260 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  NN )
120119nncnd 9757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  CC )
121113nnne0d 9785 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  =/=  0 )
122119nnne0d 9785 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  =/=  0 )
123117, 114, 103, 120, 121, 122, 104divdivdivd 9578 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( ( P ^
( P  pCnt  z
) )  x.  w
) ) )
124100oveq2d 5835 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( P 
pCnt  ( z  /  w ) ) )
125 pcdiv 12899 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
12623, 99, 110, 102, 125syl121anc 1189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
127124, 126eqtrd 2316 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
128127oveq2d 5835 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( P ^
( ( P  pCnt  z )  -  ( P 
pCnt  w ) ) ) )
129118nn0zd 10110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  ZZ )
130112nn0zd 10110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  ZZ )
13179, 80, 129, 130expsubd 11250 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  z
)  -  ( P 
pCnt  w ) ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
132128, 131eqtrd 2316 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
133132oveq2d 5835 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) ) )
134100oveq1d 5834 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  /  w )  / 
( ( P ^
( P  pCnt  z
) )  /  ( P ^ ( P  pCnt  w ) ) ) ) )
135117, 103, 114, 120, 104, 122, 121divdivdivd 9578 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
136133, 134, 1353eqtrd 2320 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( w  x.  ( P ^
( P  pCnt  z
) ) ) ) )
137116, 123, 1363eqtr4d 2326 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( B  / 
( P ^ ( P  pCnt  B ) ) ) )
138137oveq2d 5835 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  B ) )  x.  ( B  /  ( P ^ ( P  pCnt  B ) ) ) ) )
139 qcn 10325 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  CC )
14028, 139syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  CC )
14179, 80, 31expclzd 11244 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  e.  CC )
14279, 80, 31expne0d 11245 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =/=  0 )
143140, 141, 142divcan2d 9533 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  ( B  /  ( P ^
( P  pCnt  B
) ) ) )  =  B )
144138, 143eqtr2d 2317 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( ( P ^ ( P  pCnt  B ) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) ) )
145 eluz 10236 . . . . . . . . . . 11  |-  ( ( ( P  pCnt  A
)  e.  ZZ  /\  ( P  pCnt  B )  e.  ZZ )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14694, 31, 145syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14745, 146mpbird 225 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ( ZZ>= `  ( P  pCnt  A ) ) )
148 pczdvds 12909 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P ^
( P  pCnt  x
) )  ||  x
)
14923, 26, 60, 148syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) ) 
||  x )
15063nnzd 10111 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  ZZ )
151 dvdsval2 12528 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  x ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  x ) )  =/=  0  /\  x  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  x ) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
152150, 71, 26, 151syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
153149, 152mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ )
154 pczndvds2 12913 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  -.  P  ||  (
x  /  ( P ^ ( P  pCnt  x ) ) ) )
15523, 26, 60, 154syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) )
156153, 155jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  e.  ZZ  /\  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) ) )
157 pcdvds 12910 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  ( P ^ ( P  pCnt  y ) )  ||  y
)
15823, 52, 157syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) ) 
||  y )
15969nnzd 10111 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  ZZ )
16052nnzd 10111 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  ZZ )
161 dvdsval2 12528 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  y ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  y ) )  =/=  0  /\  y  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  y ) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
162159, 72, 160, 161syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  y
) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
163158, 162mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ )
16452nnred 9756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  RR )
16569nnred 9756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  RR )
16652nngt0d 9784 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  y )
16769nngt0d 9784 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  y ) ) )
168164, 165, 166, 167divgt0d 9687 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
169 elnnz 10029 . . . . . . . . . . 11  |-  ( ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN  <->  ( ( y  /  ( P ^
( P  pCnt  y
) ) )  e.  ZZ  /\  0  < 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )
170163, 168, 169sylanbrc 647 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN )
171 pcndvds2 12914 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  -.  P  ||  ( y  / 
( P ^ ( P  pCnt  y ) ) ) )
17223, 52, 171syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
173170, 172jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( y  / 
( P ^ ( P  pCnt  y ) ) )  e.  NN  /\  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) ) )
174 pczdvds 12909 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P ^
( P  pCnt  z
) )  ||  z
)
17523, 99, 110, 174syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) ) 
||  z )
176113nnzd 10111 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  ZZ )
177 dvdsval2 12528 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  z ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  z ) )  =/=  0  /\  z  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  z ) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
178176, 121, 99, 177syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
179175, 178mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ )
180 pczndvds2 12913 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  -.  P  ||  (
z  /  ( P ^ ( P  pCnt  z ) ) ) )
18123, 99, 110, 180syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) )
182179, 181jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  e.  ZZ  /\  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) ) )
183 pcdvds 12910 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  ( P ^ ( P  pCnt  w ) )  ||  w
)
18423, 102, 183syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) ) 
||  w )
185119nnzd 10111 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  ZZ )
186102nnzd 10111 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  ZZ )
187 dvdsval2 12528 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  w ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  w ) )  =/=  0  /\  w  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  w ) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
188185, 122, 186, 187syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  w
) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
189184, 188mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ )
190102nnred 9756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  RR )
191119nnred 9756 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  RR )
192102nngt0d 9784 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  w )
193119nngt0d 9784 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  w ) ) )
194190, 191, 192, 193divgt0d 9687 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
195 elnnz 10029 . . . . . . . . . . 11  |-  ( ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN  <->  ( ( w  /  ( P ^
( P  pCnt  w
) ) )  e.  ZZ  /\  0  < 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )
196189, 194, 195sylanbrc 647 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN )
197 pcndvds2 12914 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  -.  P  ||  ( w  / 
( P ^ ( P  pCnt  w ) ) ) )
19823, 102, 197syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
199196, 198jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( w  / 
( P ^ ( P  pCnt  w ) ) )  e.  NN  /\  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) ) )
20023, 98, 144, 147, 156, 173, 182, 199pcaddlem 12930 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
201200expr 600 . . . . . . 7  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
202201rexlimdvva 2675 . . . . . 6  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
20322, 202syl5bir 211 . . . . 5  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
204203rexlimdvva 2675 . . . 4  |-  ( (
ph  /\  B  =/=  0 )  ->  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
20521, 204syl5bir 211 . . 3  |-  ( (
ph  /\  B  =/=  0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
20620, 205pm2.61dane 2525 . 2  |-  ( ph  ->  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
2073, 6, 206mp2and 662 1  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732    + caddc 8735    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225   QQcq 10311   ^cexp 11098    || cdivides 12525   Primecprime 12752    pCnt cpc 12883
This theorem is referenced by:  pcadd2  12932  padicabv  20773
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884
  Copyright terms: Public domain W3C validator