MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcadd Unicode version

Theorem pcadd 12937
Description: An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcadd.1  |-  ( ph  ->  P  e.  Prime )
pcadd.2  |-  ( ph  ->  A  e.  QQ )
pcadd.3  |-  ( ph  ->  B  e.  QQ )
pcadd.4  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Assertion
Ref Expression
pcadd  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )

Proof of Theorem pcadd
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcadd.2 . . 3  |-  ( ph  ->  A  e.  QQ )
2 elq 10318 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 188 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 pcadd.3 . . 3  |-  ( ph  ->  B  e.  QQ )
5 elq 10318 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 188 . 2  |-  ( ph  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 pcadd.1 . . . . . . . 8  |-  ( ph  ->  P  e.  Prime )
8 pcxcl 12913 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
97, 1, 8syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  A
)  e.  RR* )
10 xrleid 10484 . . . . . . 7  |-  ( ( P  pCnt  A )  e.  RR*  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
119, 10syl 15 . . . . . 6  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  A ) )
1211adantr 451 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  A
) )
13 oveq2 5866 . . . . . . 7  |-  ( B  =  0  ->  ( A  +  B )  =  ( A  + 
0 ) )
14 qcn 10330 . . . . . . . . 9  |-  ( A  e.  QQ  ->  A  e.  CC )
151, 14syl 15 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1615addid1d 9012 . . . . . . 7  |-  ( ph  ->  ( A  +  0 )  =  A )
1713, 16sylan9eqr 2337 . . . . . 6  |-  ( (
ph  /\  B  = 
0 )  ->  ( A  +  B )  =  A )
1817oveq2d 5874 . . . . 5  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  ( A  +  B ) )  =  ( P  pCnt  A
) )
1912, 18breqtrrd 4049 . . . 4  |-  ( (
ph  /\  B  = 
0 )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) )
2019a1d 22 . . 3  |-  ( (
ph  /\  B  = 
0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
21 reeanv 2707 . . . 4  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
22 reeanv 2707 . . . . . 6  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
237ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  Prime )
24 prmnn 12761 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  NN )
26 simplrl 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  ZZ )
27 simprrl 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( x  /  y ) )
284ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  QQ )
29 simpllr 735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =/=  0 )
30 pcqcl 12909 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3123, 28, 29, 30syl12anc 1180 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3231zred 10117 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  RR )
33 ltpnf 10463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  <  +oo )
34 rexr 8877 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  pCnt  B )  e.  RR  ->  ( P  pCnt  B )  e.  RR* )
35 pnfxr 10455 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  +oo  e.  RR*
36 xrltnle 8891 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  pCnt  B
)  e.  RR*  /\  +oo  e.  RR* )  ->  (
( P  pCnt  B
)  <  +oo  <->  -.  +oo  <_  ( P  pCnt  B )
) )
3734, 35, 36sylancl 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  pCnt  B )  e.  RR  ->  ( ( P  pCnt  B )  <  +oo 
<->  -.  +oo  <_  ( P 
pCnt  B ) ) )
3833, 37mpbid 201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  pCnt  B )  e.  RR  ->  -.  +oo  <_  ( P  pCnt  B )
)
3932, 38syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  +oo  <_  ( P  pCnt  B ) )
40 pc0 12907 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = 
+oo )
4123, 40syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  0
)  =  +oo )
4241breq1d 4033 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  0 )  <_  ( P  pCnt  B )  <->  +oo  <_  ( P  pCnt  B ) ) )
4339, 42mtbird 292 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  ( P  pCnt  0
)  <_  ( P  pCnt  B ) )
44 pcadd.4 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
4544ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
46 oveq2 5866 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =  0  ->  ( P  pCnt  A )  =  ( P  pCnt  0
) )
4746breq1d 4033 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  =  0  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  <->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4845, 47syl5ibcom 211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  =  0  ->  ( P  pCnt  0 )  <_  ( P  pCnt  B ) ) )
4948necon3bd 2483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( -.  ( P 
pCnt  0 )  <_ 
( P  pCnt  B
)  ->  A  =/=  0 ) )
5043, 49mpd 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =/=  0 )
5127, 50eqnetrrd 2466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  y
)  =/=  0 )
52 simprll 738 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  NN )
5352nncnd 9762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  CC )
5452nnne0d 9790 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  =/=  0 )
5553, 54div0d 9535 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  y
)  =  0 )
56 oveq1 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
5756eqeq1d 2291 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
5855, 57syl5ibrcom 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
5958necon3d 2484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
6051, 59mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  =/=  0 )
61 pczcl 12901 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
6223, 26, 60, 61syl12anc 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
6325, 62nnexpcld 11266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  NN )
6463nncnd 9762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  CC )
6564, 53mulcomd 8856 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  x.  y
)  =  ( y  x.  ( P ^
( P  pCnt  x
) ) ) )
6665oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( ( P ^ ( P 
pCnt  x ) )  x.  y ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
6726zcnd 10118 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  x  e.  CC )
6823, 52pccld 12903 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6925, 68nnexpcld 11266 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  NN )
7069nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  CC )
7163nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  =/=  0 )
7269nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  =/=  0 )
7367, 64, 53, 70, 71, 72, 54divdivdivd 9583 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( ( P ^
( P  pCnt  x
) )  x.  y
) ) )
7427oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( P 
pCnt  ( x  / 
y ) ) )
75 pcdiv 12905 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7623, 26, 60, 52, 75syl121anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7774, 76eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7877oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( P ^
( ( P  pCnt  x )  -  ( P 
pCnt  y ) ) ) )
7925nncnd 9762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  e.  CC )
8025nnne0d 9790 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  P  =/=  0 )
8168nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  y
)  e.  ZZ )
8262nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  x
)  e.  ZZ )
8379, 80, 81, 82expsubd 11256 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  x
)  -  ( P 
pCnt  y ) ) )  =  ( ( P ^ ( P 
pCnt  x ) )  / 
( P ^ ( P  pCnt  y ) ) ) )
8478, 83eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =  ( ( P ^ ( P  pCnt  x ) )  /  ( P ^ ( P  pCnt  y ) ) ) )
8584oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) ) )
8627oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  /  y )  / 
( ( P ^
( P  pCnt  x
) )  /  ( P ^ ( P  pCnt  y ) ) ) ) )
8767, 53, 64, 70, 54, 72, 71divdivdivd 9583 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
y )  /  (
( P ^ ( P  pCnt  x ) )  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( ( x  x.  ( P ^
( P  pCnt  y
) ) )  / 
( y  x.  ( P ^ ( P  pCnt  x ) ) ) ) )
8885, 86, 873eqtrd 2319 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( A  /  ( P ^ ( P  pCnt  A ) ) )  =  ( ( x  x.  ( P ^ ( P  pCnt  y ) ) )  /  ( y  x.  ( P ^
( P  pCnt  x
) ) ) ) )
8966, 73, 883eqtr4d 2325 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  /  ( y  /  ( P ^
( P  pCnt  y
) ) ) )  =  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
9089oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  A ) )  x.  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
911ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  QQ )
9291, 14syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  e.  CC )
93 pcqcl 12909 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9423, 91, 50, 93syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  e.  ZZ )
9579, 80, 94expclzd 11250 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  e.  CC )
9679, 80, 94expne0d 11251 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  A ) )  =/=  0 )
9792, 95, 96divcan2d 9538 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
9890, 97eqtr2d 2316 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  A  =  ( ( P ^ ( P  pCnt  A ) )  x.  (
( x  /  ( P ^ ( P  pCnt  x ) ) )  / 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) ) )
99 simplrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  ZZ )
100 simprrr 741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( z  /  w ) )
101100, 29eqnetrrd 2466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  w
)  =/=  0 )
102 simprlr 739 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  NN )
103102nncnd 9762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  CC )
104102nnne0d 9790 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  =/=  0 )
105103, 104div0d 9535 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( 0  /  w
)  =  0 )
106 oveq1 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
107106eqeq1d 2291 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
108105, 107syl5ibrcom 213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
109108necon3d 2484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
110101, 109mpd 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  =/=  0 )
111 pczcl 12901 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
11223, 99, 110, 111syl12anc 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
11325, 112nnexpcld 11266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  NN )
114113nncnd 9762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  CC )
115114, 103mulcomd 8856 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  x.  w
)  =  ( w  x.  ( P ^
( P  pCnt  z
) ) ) )
116115oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( ( P ^ ( P 
pCnt  z ) )  x.  w ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
11799zcnd 10118 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
z  e.  CC )
11823, 102pccld 12903 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
11925, 118nnexpcld 11266 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  NN )
120119nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  CC )
121113nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  =/=  0 )
122119nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  =/=  0 )
123117, 114, 103, 120, 121, 122, 104divdivdivd 9583 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( ( P ^
( P  pCnt  z
) )  x.  w
) ) )
124100oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( P 
pCnt  ( z  /  w ) ) )
125 pcdiv 12905 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
12623, 99, 110, 102, 125syl121anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
127124, 126eqtrd 2315 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
128127oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( P ^
( ( P  pCnt  z )  -  ( P 
pCnt  w ) ) ) )
129118nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  w
)  e.  ZZ )
130112nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  z
)  e.  ZZ )
13179, 80, 129, 130expsubd 11256 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ (
( P  pCnt  z
)  -  ( P 
pCnt  w ) ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
132128, 131eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =  ( ( P ^ ( P  pCnt  z ) )  /  ( P ^ ( P  pCnt  w ) ) ) )
133132oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) ) )
134100oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  /  w )  / 
( ( P ^
( P  pCnt  z
) )  /  ( P ^ ( P  pCnt  w ) ) ) ) )
135117, 103, 114, 120, 104, 122, 121divdivdivd 9583 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  /  w )  /  (
( P ^ ( P  pCnt  z ) )  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( ( z  x.  ( P ^
( P  pCnt  w
) ) )  / 
( w  x.  ( P ^ ( P  pCnt  z ) ) ) ) )
136133, 134, 1353eqtrd 2319 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( B  /  ( P ^ ( P  pCnt  B ) ) )  =  ( ( z  x.  ( P ^ ( P  pCnt  w ) ) )  /  ( w  x.  ( P ^
( P  pCnt  z
) ) ) ) )
137116, 123, 1363eqtr4d 2325 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  /  ( w  /  ( P ^
( P  pCnt  w
) ) ) )  =  ( B  / 
( P ^ ( P  pCnt  B ) ) ) )
138137oveq2d 5874 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )  =  ( ( P ^ ( P 
pCnt  B ) )  x.  ( B  /  ( P ^ ( P  pCnt  B ) ) ) ) )
139 qcn 10330 . . . . . . . . . . . 12  |-  ( B  e.  QQ  ->  B  e.  CC )
14028, 139syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  e.  CC )
14179, 80, 31expclzd 11250 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  e.  CC )
14279, 80, 31expne0d 11251 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  B ) )  =/=  0 )
143140, 141, 142divcan2d 9538 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  B
) )  x.  ( B  /  ( P ^
( P  pCnt  B
) ) ) )  =  B )
144138, 143eqtr2d 2316 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  B  =  ( ( P ^ ( P  pCnt  B ) )  x.  (
( z  /  ( P ^ ( P  pCnt  z ) ) )  / 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) ) )
145 eluz 10241 . . . . . . . . . . 11  |-  ( ( ( P  pCnt  A
)  e.  ZZ  /\  ( P  pCnt  B )  e.  ZZ )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14694, 31, 145syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P  pCnt  B )  e.  ( ZZ>= `  ( P  pCnt  A ) )  <->  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
14745, 146mpbird 223 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  B
)  e.  ( ZZ>= `  ( P  pCnt  A ) ) )
148 pczdvds 12915 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P ^
( P  pCnt  x
) )  ||  x
)
14923, 26, 60, 148syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) ) 
||  x )
15063nnzd 10116 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  x ) )  e.  ZZ )
151 dvdsval2 12534 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  x ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  x ) )  =/=  0  /\  x  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  x ) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
152150, 71, 26, 151syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  x
) )  ||  x  <->  ( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ ) )
153149, 152mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( x  /  ( P ^ ( P  pCnt  x ) ) )  e.  ZZ )
154 pczndvds2 12919 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  -.  P  ||  (
x  /  ( P ^ ( P  pCnt  x ) ) ) )
15523, 26, 60, 154syl12anc 1180 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) )
156153, 155jca 518 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( x  / 
( P ^ ( P  pCnt  x ) ) )  e.  ZZ  /\  -.  P  ||  ( x  /  ( P ^
( P  pCnt  x
) ) ) ) )
157 pcdvds 12916 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  ( P ^ ( P  pCnt  y ) )  ||  y
)
15823, 52, 157syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) ) 
||  y )
15969nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  ZZ )
16052nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  ZZ )
161 dvdsval2 12534 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  y ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  y ) )  =/=  0  /\  y  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  y ) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
162159, 72, 160, 161syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  y
) )  ||  y  <->  ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ ) )
163158, 162mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  ZZ )
16452nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
y  e.  RR )
16569nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  y ) )  e.  RR )
16652nngt0d 9789 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  y )
16769nngt0d 9789 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  y ) ) )
168164, 165, 166, 167divgt0d 9692 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
169 elnnz 10034 . . . . . . . . . . 11  |-  ( ( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN  <->  ( ( y  /  ( P ^
( P  pCnt  y
) ) )  e.  ZZ  /\  0  < 
( y  /  ( P ^ ( P  pCnt  y ) ) ) ) )
170163, 168, 169sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( y  /  ( P ^ ( P  pCnt  y ) ) )  e.  NN )
171 pcndvds2 12920 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  -.  P  ||  ( y  / 
( P ^ ( P  pCnt  y ) ) ) )
17223, 52, 171syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) )
173170, 172jca 518 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( y  / 
( P ^ ( P  pCnt  y ) ) )  e.  NN  /\  -.  P  ||  ( y  /  ( P ^
( P  pCnt  y
) ) ) ) )
174 pczdvds 12915 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P ^
( P  pCnt  z
) )  ||  z
)
17523, 99, 110, 174syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) ) 
||  z )
176113nnzd 10116 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  z ) )  e.  ZZ )
177 dvdsval2 12534 . . . . . . . . . . . 12  |-  ( ( ( P ^ ( P  pCnt  z ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  z ) )  =/=  0  /\  z  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  z ) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
178176, 121, 99, 177syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  z
) )  ||  z  <->  ( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ ) )
179175, 178mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( z  /  ( P ^ ( P  pCnt  z ) ) )  e.  ZZ )
180 pczndvds2 12919 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  -.  P  ||  (
z  /  ( P ^ ( P  pCnt  z ) ) ) )
18123, 99, 110, 180syl12anc 1180 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) )
182179, 181jca 518 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( z  / 
( P ^ ( P  pCnt  z ) ) )  e.  ZZ  /\  -.  P  ||  ( z  /  ( P ^
( P  pCnt  z
) ) ) ) )
183 pcdvds 12916 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  ( P ^ ( P  pCnt  w ) )  ||  w
)
18423, 102, 183syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) ) 
||  w )
185119nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  ZZ )
186102nnzd 10116 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  ZZ )
187 dvdsval2 12534 . . . . . . . . . . . . 13  |-  ( ( ( P ^ ( P  pCnt  w ) )  e.  ZZ  /\  ( P ^ ( P  pCnt  w ) )  =/=  0  /\  w  e.  ZZ )  ->  ( ( P ^ ( P  pCnt  w ) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
188185, 122, 186, 187syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( P ^
( P  pCnt  w
) )  ||  w  <->  ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ ) )
189184, 188mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  ZZ )
190102nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  w  e.  RR )
191119nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P ^ ( P  pCnt  w ) )  e.  RR )
192102nngt0d 9789 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  w )
193119nngt0d 9789 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( P ^ ( P  pCnt  w ) ) )
194190, 191, 192, 193divgt0d 9692 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
0  <  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
195 elnnz 10034 . . . . . . . . . . 11  |-  ( ( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN  <->  ( ( w  /  ( P ^
( P  pCnt  w
) ) )  e.  ZZ  /\  0  < 
( w  /  ( P ^ ( P  pCnt  w ) ) ) ) )
196189, 194, 195sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( w  /  ( P ^ ( P  pCnt  w ) ) )  e.  NN )
197 pcndvds2 12920 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  w  e.  NN )  ->  -.  P  ||  ( w  / 
( P ^ ( P  pCnt  w ) ) ) )
19823, 102, 197syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  ->  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) )
199196, 198jca 518 . . . . . . . . 9  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( ( w  / 
( P ^ ( P  pCnt  w ) ) )  e.  NN  /\  -.  P  ||  ( w  /  ( P ^
( P  pCnt  w
) ) ) ) )
20023, 98, 144, 147, 156, 173, 182, 199pcaddlem 12936 . . . . . . . 8  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) ) ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
201200expr 598 . . . . . . 7  |-  ( ( ( ( ph  /\  B  =/=  0 )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
202201rexlimdvva 2674 . . . . . 6  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  A )  <_ 
( P  pCnt  ( A  +  B )
) ) )
20322, 202syl5bir 209 . . . . 5  |-  ( ( ( ph  /\  B  =/=  0 )  /\  (
x  e.  ZZ  /\  z  e.  ZZ )
)  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
204203rexlimdvva 2674 . . . 4  |-  ( (
ph  /\  B  =/=  0 )  ->  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) ) )
20521, 204syl5bir 209 . . 3  |-  ( (
ph  /\  B  =/=  0 )  ->  (
( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
20620, 205pm2.61dane 2524 . 2  |-  ( ph  ->  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) ) )
2073, 6, 206mp2and 660 1  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   QQcq 10316   ^cexp 11104    || cdivides 12531   Primecprime 12758    pCnt cpc 12889
This theorem is referenced by:  pcadd2  12938  padicabv  20779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890
  Copyright terms: Public domain W3C validator