MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcid Unicode version

Theorem pcid 12887
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcid  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )

Proof of Theorem pcid
StepHypRef Expression
1 elznn0nn 10004 . 2  |-  ( A  e.  ZZ  <->  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )
2 pcidlem 12886 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3 prmnn 12724 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
43adantr 453 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  NN )
54nncnd 9730 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  CC )
6 simprl 735 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  A  e.  RR )
76recnd 8829 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  A  e.  CC )
8 nnnn0 9939 . . . . . . 7  |-  ( -u A  e.  NN  ->  -u A  e.  NN0 )
98ad2antll 712 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  -u A  e.  NN0 )
10 expneg2 11078 . . . . . 6  |-  ( ( P  e.  CC  /\  A  e.  CC  /\  -u A  e.  NN0 )  ->  ( P ^ A )  =  ( 1  /  ( P ^ -u A ) ) )
115, 7, 9, 10syl3anc 1187 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P ^ A
)  =  ( 1  /  ( P ^ -u A ) ) )
1211oveq2d 5808 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ A ) )  =  ( P  pCnt  ( 1  /  ( P ^ -u A ) ) ) )
13 simpl 445 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  P  e.  Prime )
14 1z 10020 . . . . . . 7  |-  1  e.  ZZ
1514a1i 12 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
1  e.  ZZ )
16 ax-1ne0 8774 . . . . . . 7  |-  1  =/=  0
1716a1i 12 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
1  =/=  0 )
184, 9nnexpcld 11232 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P ^ -u A
)  e.  NN )
19 pcdiv 12867 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
1  e.  ZZ  /\  1  =/=  0 )  /\  ( P ^ -u A
)  e.  NN )  ->  ( P  pCnt  ( 1  /  ( P ^ -u A ) ) )  =  ( ( P  pCnt  1
)  -  ( P 
pCnt  ( P ^ -u A ) ) ) )
2013, 15, 17, 18, 19syl121anc 1192 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  (
1  /  ( P ^ -u A ) ) )  =  ( ( P  pCnt  1
)  -  ( P 
pCnt  ( P ^ -u A ) ) ) )
21 pc1 12870 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 453 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  1
)  =  0 )
23 pcidlem 12886 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  -u A  e.  NN0 )  ->  ( P  pCnt  ( P ^ -u A ) )  = 
-u A )
249, 23syldan 458 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ -u A ) )  =  -u A
)
2522, 24oveq12d 5810 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( ( P  pCnt  1 )  -  ( P  pCnt  ( P ^ -u A ) ) )  =  ( 0  - 
-u A ) )
26 df-neg 9008 . . . . . . 7  |-  -u -u A  =  ( 0  - 
-u A )
277negnegd 9116 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  ->  -u -u A  =  A
)
2826, 27syl5eqr 2304 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( 0  -  -u A
)  =  A )
2925, 28eqtrd 2290 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( ( P  pCnt  1 )  -  ( P  pCnt  ( P ^ -u A ) ) )  =  A )
3020, 29eqtrd 2290 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  (
1  /  ( P ^ -u A ) ) )  =  A )
3112, 30eqtrd 2290 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  RR  /\  -u A  e.  NN ) )  -> 
( P  pCnt  ( P ^ A ) )  =  A )
322, 31jaodan 763 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  NN0  \/  ( A  e.  RR  /\  -u A  e.  NN ) ) )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
331, 32sylan2b 463 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    - cmin 9005   -ucneg 9006    / cdiv 9391   NNcn 9714   NN0cn0 9932   ZZcz 9991   ^cexp 11070   Primecprime 12720    pCnt cpc 12851
This theorem is referenced by:  pcprmpw2  12896  pcaddlem  12898  expnprm  12912  sylow1lem1  14871  pgpfi  14878  ablfaclem3  15284  isppw2  20315  dvdsppwf1o  20388  lgsval2lem  20507  dchrisum0flblem1  20619  ostth3  20749
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852
  Copyright terms: Public domain W3C validator