Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Unicode version

Theorem pclcmpatN 29369
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a  |-  A  =  ( Atoms `  K )
pclfin.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclcmpatN  |-  ( ( K  e.  AtLat  /\  X  C_  A  /\  P  e.  ( U `  X
) )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
Distinct variable groups:    y, A    y, U    y, K    y, X    y, P

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6  |-  A  =  ( Atoms `  K )
2 pclfin.c . . . . . 6  |-  U  =  ( PCl `  K
)
31, 2pclfinN 29368 . . . . 5  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( U `  X )  =  U_ y  e.  ( Fin  i^i  ~P X
) ( U `  y ) )
43eleq2d 2351 . . . 4  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  <->  P  e.  U_ y  e.  ( Fin 
i^i  ~P X ) ( U `  y ) ) )
5 eliun 3910 . . . 4  |-  ( P  e.  U_ y  e.  ( Fin  i^i  ~P X ) ( U `
 y )  <->  E. y  e.  ( Fin  i^i  ~P X ) P  e.  ( U `  y
) )
64, 5syl6bb 252 . . 3  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  <->  E. y  e.  ( Fin  i^i  ~P X ) P  e.  ( U `  y
) ) )
7 elin 3359 . . . . . . 7  |-  ( y  e.  ( Fin  i^i  ~P X )  <->  ( y  e.  Fin  /\  y  e. 
~P X ) )
8 elpwi 3634 . . . . . . . 8  |-  ( y  e.  ~P X  -> 
y  C_  X )
98anim2i 552 . . . . . . 7  |-  ( ( y  e.  Fin  /\  y  e.  ~P X
)  ->  ( y  e.  Fin  /\  y  C_  X ) )
107, 9sylbi 187 . . . . . 6  |-  ( y  e.  ( Fin  i^i  ~P X )  ->  (
y  e.  Fin  /\  y  C_  X ) )
1110anim1i 551 . . . . 5  |-  ( ( y  e.  ( Fin 
i^i  ~P X )  /\  P  e.  ( U `  y ) )  -> 
( ( y  e. 
Fin  /\  y  C_  X )  /\  P  e.  ( U `  y
) ) )
12 anass 630 . . . . 5  |-  ( ( ( y  e.  Fin  /\  y  C_  X )  /\  P  e.  ( U `  y )
)  <->  ( y  e. 
Fin  /\  ( y  C_  X  /\  P  e.  ( U `  y
) ) ) )
1311, 12sylib 188 . . . 4  |-  ( ( y  e.  ( Fin 
i^i  ~P X )  /\  P  e.  ( U `  y ) )  -> 
( y  e.  Fin  /\  ( y  C_  X  /\  P  e.  ( U `  y )
) ) )
1413reximi2 2650 . . 3  |-  ( E. y  e.  ( Fin 
i^i  ~P X ) P  e.  ( U `  y )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
156, 14syl6bi 219 . 2  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) ) )
16153impia 1148 1  |-  ( ( K  e.  AtLat  /\  X  C_  A  /\  P  e.  ( U `  X
) )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   E.wrex 2545    i^i cin 3152    C_ wss 3153   ~Pcpw 3626   U_ciun 3906   ` cfv 5221   Fincfn 6859   Atomscatm 28732   AtLatcal 28733   PClcpclN 29355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-fin 6863  df-poset 14076  df-plt 14088  df-lub 14104  df-join 14106  df-lat 14148  df-covers 28735  df-ats 28736  df-atl 28767  df-psubsp 28971  df-pclN 29356
  Copyright terms: Public domain W3C validator