Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Structured version   Unicode version

Theorem pclcmpatN 30635
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a  |-  A  =  ( Atoms `  K )
pclfin.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclcmpatN  |-  ( ( K  e.  AtLat  /\  X  C_  A  /\  P  e.  ( U `  X
) )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
Distinct variable groups:    y, A    y, U    y, K    y, X    y, P

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6  |-  A  =  ( Atoms `  K )
2 pclfin.c . . . . . 6  |-  U  =  ( PCl `  K
)
31, 2pclfinN 30634 . . . . 5  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( U `  X )  =  U_ y  e.  ( Fin  i^i  ~P X
) ( U `  y ) )
43eleq2d 2502 . . . 4  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  <->  P  e.  U_ y  e.  ( Fin 
i^i  ~P X ) ( U `  y ) ) )
5 eliun 4089 . . . 4  |-  ( P  e.  U_ y  e.  ( Fin  i^i  ~P X ) ( U `
 y )  <->  E. y  e.  ( Fin  i^i  ~P X ) P  e.  ( U `  y
) )
64, 5syl6bb 253 . . 3  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  <->  E. y  e.  ( Fin  i^i  ~P X ) P  e.  ( U `  y
) ) )
7 elin 3522 . . . . . . 7  |-  ( y  e.  ( Fin  i^i  ~P X )  <->  ( y  e.  Fin  /\  y  e. 
~P X ) )
8 elpwi 3799 . . . . . . . 8  |-  ( y  e.  ~P X  -> 
y  C_  X )
98anim2i 553 . . . . . . 7  |-  ( ( y  e.  Fin  /\  y  e.  ~P X
)  ->  ( y  e.  Fin  /\  y  C_  X ) )
107, 9sylbi 188 . . . . . 6  |-  ( y  e.  ( Fin  i^i  ~P X )  ->  (
y  e.  Fin  /\  y  C_  X ) )
1110anim1i 552 . . . . 5  |-  ( ( y  e.  ( Fin 
i^i  ~P X )  /\  P  e.  ( U `  y ) )  -> 
( ( y  e. 
Fin  /\  y  C_  X )  /\  P  e.  ( U `  y
) ) )
12 anass 631 . . . . 5  |-  ( ( ( y  e.  Fin  /\  y  C_  X )  /\  P  e.  ( U `  y )
)  <->  ( y  e. 
Fin  /\  ( y  C_  X  /\  P  e.  ( U `  y
) ) ) )
1311, 12sylib 189 . . . 4  |-  ( ( y  e.  ( Fin 
i^i  ~P X )  /\  P  e.  ( U `  y ) )  -> 
( y  e.  Fin  /\  ( y  C_  X  /\  P  e.  ( U `  y )
) ) )
1413reximi2 2804 . . 3  |-  ( E. y  e.  ( Fin 
i^i  ~P X ) P  e.  ( U `  y )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
156, 14syl6bi 220 . 2  |-  ( ( K  e.  AtLat  /\  X  C_  A )  ->  ( P  e.  ( U `  X )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) ) )
16153impia 1150 1  |-  ( ( K  e.  AtLat  /\  X  C_  A  /\  P  e.  ( U `  X
) )  ->  E. y  e.  Fin  ( y  C_  X  /\  P  e.  ( U `  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   U_ciun 4085   ` cfv 5446   Fincfn 7101   Atomscatm 29998   AtLatcal 29999   PClcpclN 30621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-fin 7105  df-poset 14395  df-plt 14407  df-lub 14423  df-join 14425  df-lat 14467  df-covers 30001  df-ats 30002  df-atl 30033  df-psubsp 30237  df-pclN 30622
  Copyright terms: Public domain W3C validator