MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Unicode version

Theorem pcqmul 12922
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcqmul
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 981 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 elq 10334 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 188 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 simp3l 983 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 elq 10334 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 188 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 reeanv 2720 . . 3  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
8 reeanv 2720 . . . . 5  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
9 simp2r 982 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
10 simp3r 984 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
119, 10jca 518 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
1211ad2antrr 706 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
13 simp1 955 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
14 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  NN )
1514nncnd 9778 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  CC )
1614nnne0d 9806 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  =/=  0 )
1715, 16div0d 9551 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  y
)  =  0 )
18 oveq1 5881 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
1918eqeq1d 2304 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
2017, 19syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
2120necon3d 2497 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
22 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  NN )
2322nncnd 9778 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  CC )
2422nnne0d 9806 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  =/=  0 )
2523, 24div0d 9551 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  w
)  =  0 )
26 oveq1 5881 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
2726eqeq1d 2304 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
2825, 27syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
2928necon3d 2497 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
30 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  P  e.  Prime )
31 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  ZZ )
32 simplrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  ZZ )
3331, 32zmulcld 10139 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  e.  ZZ )
3431zcnd 10134 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  CC )
3532zcnd 10134 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  CC )
36 simprrl 740 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  =/=  0 )
37 simprrr 741 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  =/=  0 )
3834, 35, 36, 37mulne0d 9436 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  =/=  0 )
3914adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  NN )
4022adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  NN )
4139, 40nnmulcld 9809 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( y  x.  w
)  e.  NN )
42 pcdiv 12921 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( x  x.  z
)  e.  ZZ  /\  ( x  x.  z
)  =/=  0 )  /\  ( y  x.  w )  e.  NN )  ->  ( P  pCnt  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
4330, 33, 38, 41, 42syl121anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
44 pcmul 12920 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( x  x.  z
) )  =  ( ( P  pCnt  x
)  +  ( P 
pCnt  z ) ) )
4530, 31, 36, 32, 37, 44syl122anc 1191 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  x.  z ) )  =  ( ( P  pCnt  x )  +  ( P  pCnt  z ) ) )
4639nnzd 10132 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  ZZ )
4716adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  =/=  0 )
4840nnzd 10132 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  ZZ )
4924adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  =/=  0 )
50 pcmul 12920 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( w  e.  ZZ  /\  w  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  w
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  w ) ) )
5130, 46, 47, 48, 49, 50syl122anc 1191 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
y  x.  w ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )
5245, 51oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  x.  z ) )  -  ( P 
pCnt  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x )  +  ( P  pCnt  z ) )  -  (
( P  pCnt  y
)  +  ( P 
pCnt  w ) ) ) )
53 pczcl 12917 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
5430, 31, 36, 53syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
5554nn0cnd 10036 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  CC )
56 pczcl 12917 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
5730, 32, 37, 56syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
5857nn0cnd 10036 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  CC )
5930, 39pccld 12919 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6059nn0cnd 10036 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  CC )
6130, 40pccld 12919 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
6261nn0cnd 10036 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  CC )
6355, 58, 60, 62addsub4d 9220 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( ( P 
pCnt  x )  +  ( P  pCnt  z )
)  -  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )  =  ( ( ( P 
pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6443, 52, 633eqtrd 2332 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x
)  -  ( P 
pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6515adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  CC )
6623adantrr 697 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  CC )
6734, 65, 35, 66, 47, 49divmuldivd 9593 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
6867oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( P 
pCnt  ( ( x  x.  z )  / 
( y  x.  w
) ) ) )
69 pcdiv 12921 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7030, 31, 36, 39, 69syl121anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
71 pcdiv 12921 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7230, 32, 37, 40, 71syl121anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7370, 72oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) )  =  ( ( ( P  pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P  pCnt  z
)  -  ( P 
pCnt  w ) ) ) )
7464, 68, 733eqtr4d 2338 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P  pCnt  ( z  /  w ) ) ) )
7574expr 598 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  =/=  0  /\  z  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
7621, 29, 75syl2and 469 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
77 neeq1 2467 . . . . . . . . . . 11  |-  ( A  =  ( x  / 
y )  ->  ( A  =/=  0  <->  ( x  /  y )  =/=  0 ) )
78 neeq1 2467 . . . . . . . . . . 11  |-  ( B  =  ( z  /  w )  ->  ( B  =/=  0  <->  ( z  /  w )  =/=  0
) )
7977, 78bi2anan9 843 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( A  =/=  0  /\  B  =/=  0 )  <->  ( (
x  /  y )  =/=  0  /\  (
z  /  w )  =/=  0 ) ) )
80 oveq12 5883 . . . . . . . . . . . 12  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
8180oveq2d 5890 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( P 
pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) ) )
82 oveq2 5882 . . . . . . . . . . . 12  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
83 oveq2 5882 . . . . . . . . . . . 12  |-  ( B  =  ( z  /  w )  ->  ( P  pCnt  B )  =  ( P  pCnt  (
z  /  w ) ) )
8482, 83oveqan12d 5893 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) )
8581, 84eqeq12d 2310 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) )  <->  ( P  pCnt  ( ( x  / 
y )  x.  (
z  /  w ) ) )  =  ( ( P  pCnt  (
x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
8679, 85imbi12d 311 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( ( A  =/=  0  /\  B  =/=  0 )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) )  <-> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) ) )
8776, 86syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8813, 87sylanl1 631 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8912, 88mpid 37 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
9089rexlimdvva 2687 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
918, 90syl5bir 209 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) ) )
9291rexlimdvva 2687 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
937, 92syl5bir 209 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
943, 6, 93mp2and 660 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557  (class class class)co 5874   CCcc 8751   0cc0 8753    + caddc 8756    x. cmul 8758    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   QQcq 10332   Primecprime 12774    pCnt cpc 12905
This theorem is referenced by:  pcqdiv  12926  pcexp  12928  pcaddlem  12952  sylow1lem1  14925  padicabv  20795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906
  Copyright terms: Public domain W3C validator