MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Unicode version

Theorem pcqmul 13155
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcqmul
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 983 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 elq 10509 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 189 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 simp3l 985 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 elq 10509 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 189 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 reeanv 2819 . . 3  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
8 reeanv 2819 . . . . 5  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
9 simp2r 984 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
10 simp3r 986 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
119, 10jca 519 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
1211ad2antrr 707 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
13 simp1 957 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
14 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  NN )
1514nncnd 9949 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  CC )
1614nnne0d 9977 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  =/=  0 )
1715, 16div0d 9722 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  y
)  =  0 )
18 oveq1 6028 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
1918eqeq1d 2396 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
2017, 19syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
2120necon3d 2589 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
22 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  NN )
2322nncnd 9949 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  CC )
2422nnne0d 9977 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  =/=  0 )
2523, 24div0d 9722 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  w
)  =  0 )
26 oveq1 6028 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
2726eqeq1d 2396 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
2825, 27syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
2928necon3d 2589 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
30 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  P  e.  Prime )
31 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  ZZ )
32 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  ZZ )
3331, 32zmulcld 10314 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  e.  ZZ )
3431zcnd 10309 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  CC )
3532zcnd 10309 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  CC )
36 simprrl 741 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  =/=  0 )
37 simprrr 742 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  =/=  0 )
3834, 35, 36, 37mulne0d 9607 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  =/=  0 )
3914adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  NN )
4022adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  NN )
4139, 40nnmulcld 9980 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( y  x.  w
)  e.  NN )
42 pcdiv 13154 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( x  x.  z
)  e.  ZZ  /\  ( x  x.  z
)  =/=  0 )  /\  ( y  x.  w )  e.  NN )  ->  ( P  pCnt  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
4330, 33, 38, 41, 42syl121anc 1189 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
44 pcmul 13153 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( x  x.  z
) )  =  ( ( P  pCnt  x
)  +  ( P 
pCnt  z ) ) )
4530, 31, 36, 32, 37, 44syl122anc 1193 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  x.  z ) )  =  ( ( P  pCnt  x )  +  ( P  pCnt  z ) ) )
4639nnzd 10307 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  ZZ )
4716adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  =/=  0 )
4840nnzd 10307 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  ZZ )
4924adantrr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  =/=  0 )
50 pcmul 13153 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( w  e.  ZZ  /\  w  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  w
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  w ) ) )
5130, 46, 47, 48, 49, 50syl122anc 1193 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
y  x.  w ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )
5245, 51oveq12d 6039 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  x.  z ) )  -  ( P 
pCnt  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x )  +  ( P  pCnt  z ) )  -  (
( P  pCnt  y
)  +  ( P 
pCnt  w ) ) ) )
53 pczcl 13150 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
5430, 31, 36, 53syl12anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
5554nn0cnd 10209 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  CC )
56 pczcl 13150 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
5730, 32, 37, 56syl12anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
5857nn0cnd 10209 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  CC )
5930, 39pccld 13152 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6059nn0cnd 10209 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  CC )
6130, 40pccld 13152 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
6261nn0cnd 10209 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  CC )
6355, 58, 60, 62addsub4d 9391 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( ( P 
pCnt  x )  +  ( P  pCnt  z )
)  -  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )  =  ( ( ( P 
pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6443, 52, 633eqtrd 2424 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x
)  -  ( P 
pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6515adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  CC )
6623adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  CC )
6734, 65, 35, 66, 47, 49divmuldivd 9764 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
6867oveq2d 6037 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( P 
pCnt  ( ( x  x.  z )  / 
( y  x.  w
) ) ) )
69 pcdiv 13154 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7030, 31, 36, 39, 69syl121anc 1189 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
71 pcdiv 13154 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7230, 32, 37, 40, 71syl121anc 1189 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7370, 72oveq12d 6039 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) )  =  ( ( ( P  pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P  pCnt  z
)  -  ( P 
pCnt  w ) ) ) )
7464, 68, 733eqtr4d 2430 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P  pCnt  ( z  /  w ) ) ) )
7574expr 599 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  =/=  0  /\  z  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
7621, 29, 75syl2and 470 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
77 neeq1 2559 . . . . . . . . . . 11  |-  ( A  =  ( x  / 
y )  ->  ( A  =/=  0  <->  ( x  /  y )  =/=  0 ) )
78 neeq1 2559 . . . . . . . . . . 11  |-  ( B  =  ( z  /  w )  ->  ( B  =/=  0  <->  ( z  /  w )  =/=  0
) )
7977, 78bi2anan9 844 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( A  =/=  0  /\  B  =/=  0 )  <->  ( (
x  /  y )  =/=  0  /\  (
z  /  w )  =/=  0 ) ) )
80 oveq12 6030 . . . . . . . . . . . 12  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
8180oveq2d 6037 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( P 
pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) ) )
82 oveq2 6029 . . . . . . . . . . . 12  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
83 oveq2 6029 . . . . . . . . . . . 12  |-  ( B  =  ( z  /  w )  ->  ( P  pCnt  B )  =  ( P  pCnt  (
z  /  w ) ) )
8482, 83oveqan12d 6040 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) )
8581, 84eqeq12d 2402 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) )  <->  ( P  pCnt  ( ( x  / 
y )  x.  (
z  /  w ) ) )  =  ( ( P  pCnt  (
x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
8679, 85imbi12d 312 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( ( A  =/=  0  /\  B  =/=  0 )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) )  <-> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) ) )
8776, 86syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8813, 87sylanl1 632 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8912, 88mpid 39 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
9089rexlimdvva 2781 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
918, 90syl5bir 210 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) ) )
9291rexlimdvva 2781 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
937, 92syl5bir 210 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
943, 6, 93mp2and 661 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651  (class class class)co 6021   CCcc 8922   0cc0 8924    + caddc 8927    x. cmul 8929    - cmin 9224    / cdiv 9610   NNcn 9933   NN0cn0 10154   ZZcz 10215   QQcq 10507   Primecprime 13007    pCnt cpc 13138
This theorem is referenced by:  pcqdiv  13159  pcexp  13161  pcaddlem  13185  sylow1lem1  15160  padicabv  21192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-dvds 12781  df-gcd 12935  df-prm 13008  df-pc 13139
  Copyright terms: Public domain W3C validator