MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Unicode version

Theorem peano2nn 9760
Description: Peano postulate: a successor of a natural number is a natural number. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 6449 . . . 4  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  Fn  om
2 fvelrnb 5572 . . . 4  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )  Fn  om  ->  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  <->  E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A ) )
31, 2ax-mp 8 . . 3  |-  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  <->  E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A )
4 ovex 5885 . . . . . . 7  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  +  1 )  e.  _V
5 eqid 2285 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om )
6 oveq1 5867 . . . . . . . 8  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
7 oveq1 5867 . . . . . . . 8  |-  ( z  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  ->  (
z  +  1 )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y )  +  1 ) )
85, 6, 7frsucmpt2 6454 . . . . . . 7  |-  ( ( y  e.  om  /\  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  _V )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  suc  y )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 ) )
94, 8mpan2 652 . . . . . 6  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  =  ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  +  1 ) )
10 peano2 4678 . . . . . . . 8  |-  ( y  e.  om  ->  suc  y  e.  om )
11 fnfvelrn 5664 . . . . . . . 8  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )  Fn  om  /\ 
suc  y  e.  om )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  suc  y )  e. 
ran  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om )
)
121, 10, 11sylancr 644 . . . . . . 7  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  e.  ran  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) )
13 df-nn 9749 . . . . . . . 8  |-  NN  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 ) " om )
14 df-ima 4704 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 ) " om )  =  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )
1513, 14eqtri 2305 . . . . . . 7  |-  NN  =  ran  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
1612, 15syl6eleqr 2376 . . . . . 6  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  e.  NN )
179, 16eqeltrrd 2360 . . . . 5  |-  ( y  e.  om  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  NN )
18 oveq1 5867 . . . . . 6  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  =  ( A  +  1 ) )
1918eleq1d 2351 . . . . 5  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  NN  <->  ( A  + 
1 )  e.  NN ) )
2017, 19syl5ibcom 211 . . . 4  |-  ( y  e.  om  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  =  A  ->  ( A  + 
1 )  e.  NN ) )
2120rexlimiv 2663 . . 3  |-  ( E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( A  +  1 )  e.  NN )
223, 21sylbi 187 . 2  |-  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  ->  ( A  +  1 )  e.  NN )
2322, 15eleq2s 2377 1  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1625    e. wcel 1686   E.wrex 2546   _Vcvv 2790    e. cmpt 4079   suc csuc 4396   omcom 4658   ran crn 4692    |` cres 4693   "cima 4694    Fn wfn 5252   ` cfv 5257  (class class class)co 5860   reccrdg 6424   1c1 8740    + caddc 8742   NNcn 9748
This theorem is referenced by:  dfnn2  9761  dfnn3  9762  peano2nnd  9765  nnind  9766  nnaddcl  9770  2nn  9879  3nn  9880  4nn  9881  5nn  9882  6nn  9883  7nn  9884  8nn  9885  9nn  9886  10nn  9887  nnunb  9963  nneo  10097  ser1const  11104  expp1  11112  facp1  11295  isercolllem1  12140  isercoll2  12144  climcndslem2  12311  climcnds  12312  harmonic  12319  trireciplem  12322  trirecip  12323  rpnnen2lem9  12503  sqr2irr  12529  rplpwr  12737  prmind2  12771  eulerthlem2  12852  pcmpt  12942  pockthi  12956  prmreclem6  12970  dec5nprm  13083  mulgnnp1  14577  1stcfb  17173  bcthlem3  18750  bcthlem4  18751  ovolunlem1a  18857  ovolicc2lem4  18881  voliunlem1  18909  volsup  18915  volsup2  18962  itg1climres  19071  mbfi1fseqlem5  19076  itg2monolem1  19107  itg2i1fseqle  19111  itg2i1fseq  19112  itg2i1fseq2  19113  itg2addlem  19115  itg2gt0  19117  itg2cnlem1  19118  aaliou3lem7  19731  emcllem1  20291  emcllem2  20292  emcllem3  20293  emcllem5  20295  emcllem6  20296  emcllem7  20297  bclbnd  20521  bposlem5  20529  2sqlem10  20615  dchrisumlem2  20641  logdivbnd  20707  pntrsumo1  20716  pntrsumbnd  20717  gxnn0suc  20933  opsqrlem5  22726  opsqrlem6  22727  esumpmono  23449  zetacvg  23691  subfacp1lem6  23718  subfaclim  23721  nn0prpwlem  26249  seqpo  26468  incsequz  26469  incsequz2  26470  geomcau  26486  heiborlem6  26551  bfplem1  26557  jm2.27dlem4  27116  stoweidlem20  27780  wallispilem4  27828  wallispi2lem1  27831  wallispi2lem2  27832  stirlinglem4  27837  stirlinglem8  27841  stirlinglem11  27844  stirlinglem12  27845  stirlinglem13  27846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-recs 6390  df-rdg 6425  df-nn 9749
  Copyright terms: Public domain W3C validator