MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Unicode version

Theorem peano2nn 9937
Description: Peano postulate: a successor of a natural number is a natural number. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 6621 . . . 4  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  Fn  om
2 fvelrnb 5706 . . . 4  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )  Fn  om  ->  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  <->  E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A ) )
31, 2ax-mp 8 . . 3  |-  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  <->  E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A )
4 ovex 6038 . . . . . . 7  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  +  1 )  e.  _V
5 eqid 2380 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om )
6 oveq1 6020 . . . . . . . 8  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
7 oveq1 6020 . . . . . . . 8  |-  ( z  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  ->  (
z  +  1 )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y )  +  1 ) )
85, 6, 7frsucmpt2 6626 . . . . . . 7  |-  ( ( y  e.  om  /\  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  _V )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  suc  y )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 ) )
94, 8mpan2 653 . . . . . 6  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  =  ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  +  1 ) )
10 peano2 4798 . . . . . . . 8  |-  ( y  e.  om  ->  suc  y  e.  om )
11 fnfvelrn 5799 . . . . . . . 8  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )  Fn  om  /\ 
suc  y  e.  om )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  suc  y )  e. 
ran  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om )
)
121, 10, 11sylancr 645 . . . . . . 7  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  e.  ran  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) )
13 df-nn 9926 . . . . . . . 8  |-  NN  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 ) " om )
14 df-ima 4824 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 ) " om )  =  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )
1513, 14eqtri 2400 . . . . . . 7  |-  NN  =  ran  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
1612, 15syl6eleqr 2471 . . . . . 6  |-  ( y  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  suc  y )  e.  NN )
179, 16eqeltrrd 2455 . . . . 5  |-  ( y  e.  om  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  NN )
18 oveq1 6020 . . . . . 6  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  =  ( A  +  1 ) )
1918eleq1d 2446 . . . . 5  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y )  +  1 )  e.  NN  <->  ( A  + 
1 )  e.  NN ) )
2017, 19syl5ibcom 212 . . . 4  |-  ( y  e.  om  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  1 )  |`  om ) `  y )  =  A  ->  ( A  + 
1 )  e.  NN ) )
2120rexlimiv 2760 . . 3  |-  ( E. y  e.  om  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  A  -> 
( A  +  1 )  e.  NN )
223, 21sylbi 188 . 2  |-  ( A  e.  ran  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 )  |`  om )  ->  ( A  +  1 )  e.  NN )
2322, 15eleq2s 2472 1  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   E.wrex 2643   _Vcvv 2892    e. cmpt 4200   suc csuc 4517   omcom 4778   ran crn 4812    |` cres 4813   "cima 4814    Fn wfn 5382   ` cfv 5387  (class class class)co 6013   reccrdg 6596   1c1 8917    + caddc 8919   NNcn 9925
This theorem is referenced by:  dfnn2  9938  dfnn3  9939  peano2nnd  9942  nnind  9943  nnaddcl  9947  2nn  10058  3nn  10059  4nn  10060  5nn  10061  6nn  10062  7nn  10063  8nn  10064  9nn  10065  10nn  10066  nnunb  10142  nneo  10278  ser1const  11299  expp1  11308  facp1  11491  isercolllem1  12378  isercoll2  12382  climcndslem2  12550  climcnds  12551  harmonic  12558  trireciplem  12561  trirecip  12562  rpnnen2lem9  12742  sqr2irr  12768  rplpwr  12976  prmind2  13010  eulerthlem2  13091  pcmpt  13181  pockthi  13195  prmreclem6  13209  dec5nprm  13322  mulgnnp1  14818  1stcfb  17422  bcthlem3  19141  bcthlem4  19142  ovolunlem1a  19252  ovolicc2lem4  19276  voliunlem1  19304  volsup  19310  volsup2  19357  itg1climres  19466  mbfi1fseqlem5  19471  itg2monolem1  19502  itg2i1fseqle  19506  itg2i1fseq  19507  itg2i1fseq2  19508  itg2addlem  19510  itg2gt0  19512  itg2cnlem1  19513  aaliou3lem7  20126  emcllem1  20694  emcllem2  20695  emcllem3  20696  emcllem5  20698  emcllem6  20699  emcllem7  20700  bclbnd  20924  bposlem5  20932  2sqlem10  21018  dchrisumlem2  21044  logdivbnd  21110  pntrsumo1  21119  pntrsumbnd  21120  gxnn0suc  21693  opsqrlem5  23488  opsqrlem6  23489  esumpmono  24258  rrvsum  24484  zetacvg  24571  lgam1  24620  subfacp1lem6  24643  subfaclim  24646  faclimlem1  25113  faclimlem2  25114  faclim2  25118  volsupnfl  25949  nn0prpwlem  26009  seqpo  26135  incsequz  26136  incsequz2  26137  geomcau  26149  heiborlem6  26209  bfplem1  26215  jm2.27dlem4  26767  stoweidlem20  27430  wallispilem4  27478  wallispi2lem1  27481  wallispi2lem2  27482  stirlinglem4  27487  stirlinglem8  27491  stirlinglem11  27494  stirlinglem12  27495  stirlinglem13  27496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-recs 6562  df-rdg 6597  df-nn 9926
  Copyright terms: Public domain W3C validator