MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 9682
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
StepHypRef Expression
1 df-n 9680 . . 3  |-  NN  =  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 ) " om )
2 df-ima 4647 . . 3  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 ) " om )  =  ran  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )
31, 2eqtri 2276 . 2  |-  NN  =  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )
4 frfnom 6380 . . . . 5  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om
54a1i 12 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  Fn  om )
6 fveq2 5423 . . . . . . . 8  |-  ( y  =  (/)  ->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) ) )
76eleq1d 2322 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  e.  A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) )  e.  A
) )
8 fveq2 5423 . . . . . . . 8  |-  ( y  =  z  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z ) )
98eleq1d 2322 . . . . . . 7  |-  ( y  =  z  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  e.  A ) )
10 fveq2 5423 . . . . . . . 8  |-  ( y  =  suc  z  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z ) )
1110eleq1d 2322 . . . . . . 7  |-  ( y  =  suc  z  -> 
( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
12 ax-1cn 8728 . . . . . . . . 9  |-  1  e.  CC
13 fr0g 6381 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1 )
1412, 13ax-mp 10 . . . . . . . 8  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1
15 simpl 445 . . . . . . . 8  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
1  e.  A )
1614, 15syl5eqel 2340 . . . . . . 7  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  (/) )  e.  A
)
17 oveq1 5764 . . . . . . . . . . . 12  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
x  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
1817eleq1d 2322 . . . . . . . . . . 11  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
( x  +  1 )  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
1918rcla4cv 2832 . . . . . . . . . 10  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  e.  A  ->  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2019ad2antlr 710 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
21 ovex 5782 . . . . . . . . . . . 12  |-  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  _V
22 eqid 2256 . . . . . . . . . . . . 13  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  =  ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om )
23 oveq1 5764 . . . . . . . . . . . . 13  |-  ( y  =  n  ->  (
y  +  1 )  =  ( n  + 
1 ) )
24 oveq1 5764 . . . . . . . . . . . . 13  |-  ( y  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
y  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2522, 23, 24frsucmpt2 6385 . . . . . . . . . . . 12  |-  ( ( z  e.  om  /\  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  _V )  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2621, 25mpan2 655 . . . . . . . . . . 11  |-  ( z  e.  om  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2726eleq1d 2322 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  e.  A  <->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2827adantl 454 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z
)  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
2920, 28sylibrd 227 . . . . . . . 8  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
3029expcom 426 . . . . . . 7  |-  ( z  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) ) )
317, 9, 11, 16, 30finds2 4621 . . . . . 6  |-  ( y  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3231com12 29 . . . . 5  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( y  e.  om  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3332ralrimiv 2596 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  A. y  e.  om  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
)
34 ffnfv 5584 . . . 4  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om  /\  A. y  e.  om  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
355, 33, 34sylanbrc 648 . . 3  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A )
36 frn 5298 . . 3  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
3735, 36syl 17 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
383, 37syl5eqss 3164 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   _Vcvv 2740    C_ wss 3094   (/)c0 3397    e. cmpt 4017   suc csuc 4331   omcom 4593   ran crn 4627    |` cres 4628   "cima 4629    Fn wfn 4633   -->wf 4634   ` cfv 4638  (class class class)co 5757   reccrdg 6355   CCcc 8668   1c1 8671    + caddc 8673   NNcn 9679
This theorem is referenced by:  nnssre  9683  dfnn2  9692  nnind  9697
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-1cn 8728
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-recs 6321  df-rdg 6356  df-n 9680
  Copyright terms: Public domain W3C validator