MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 9751
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 9749 . . 3  |-  NN  =  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 ) " om )
2 df-ima 4704 . . 3  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 ) " om )  =  ran  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )
31, 2eqtri 2305 . 2  |-  NN  =  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )
4 frfnom 6449 . . . . 5  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om
54a1i 10 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  Fn  om )
6 fveq2 5527 . . . . . . . 8  |-  ( y  =  (/)  ->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) ) )
76eleq1d 2351 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  e.  A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) )  e.  A
) )
8 fveq2 5527 . . . . . . . 8  |-  ( y  =  z  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z ) )
98eleq1d 2351 . . . . . . 7  |-  ( y  =  z  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  e.  A ) )
10 fveq2 5527 . . . . . . . 8  |-  ( y  =  suc  z  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z ) )
1110eleq1d 2351 . . . . . . 7  |-  ( y  =  suc  z  -> 
( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
12 ax-1cn 8797 . . . . . . . . 9  |-  1  e.  CC
13 fr0g 6450 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1 )
1412, 13ax-mp 8 . . . . . . . 8  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1
15 simpl 443 . . . . . . . 8  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
1  e.  A )
1614, 15syl5eqel 2369 . . . . . . 7  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  (/) )  e.  A
)
17 oveq1 5867 . . . . . . . . . . . 12  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
x  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
1817eleq1d 2351 . . . . . . . . . . 11  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
( x  +  1 )  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
1918rspccv 2883 . . . . . . . . . 10  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  e.  A  ->  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2019ad2antlr 707 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
21 ovex 5885 . . . . . . . . . . . 12  |-  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  _V
22 eqid 2285 . . . . . . . . . . . . 13  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  =  ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om )
23 oveq1 5867 . . . . . . . . . . . . 13  |-  ( y  =  n  ->  (
y  +  1 )  =  ( n  + 
1 ) )
24 oveq1 5867 . . . . . . . . . . . . 13  |-  ( y  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
y  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2522, 23, 24frsucmpt2 6454 . . . . . . . . . . . 12  |-  ( ( z  e.  om  /\  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  _V )  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2621, 25mpan2 652 . . . . . . . . . . 11  |-  ( z  e.  om  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2726eleq1d 2351 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  e.  A  <->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2827adantl 452 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z
)  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
2920, 28sylibrd 225 . . . . . . . 8  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
3029expcom 424 . . . . . . 7  |-  ( z  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) ) )
317, 9, 11, 16, 30finds2 4686 . . . . . 6  |-  ( y  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3231com12 27 . . . . 5  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( y  e.  om  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3332ralrimiv 2627 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  A. y  e.  om  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
)
34 ffnfv 5687 . . . 4  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om  /\  A. y  e.  om  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
355, 33, 34sylanbrc 645 . . 3  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A )
36 frn 5397 . . 3  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
3735, 36syl 15 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
383, 37syl5eqss 3224 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790    C_ wss 3154   (/)c0 3457    e. cmpt 4079   suc csuc 4396   omcom 4658   ran crn 4692    |` cres 4693   "cima 4694    Fn wfn 5252   -->wf 5253   ` cfv 5257  (class class class)co 5860   reccrdg 6424   CCcc 8737   1c1 8740    + caddc 8742   NNcn 9748
This theorem is referenced by:  nnssre  9752  dfnn2  9761  nnind  9766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-1cn 8797
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-recs 6390  df-rdg 6425  df-nn 9749
  Copyright terms: Public domain W3C validator