MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 9896
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 9894 . . 3  |-  NN  =  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 ) " om )
2 df-ima 4805 . . 3  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 ) " om )  =  ran  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )
31, 2eqtri 2386 . 2  |-  NN  =  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )
4 frfnom 6589 . . . . 5  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om
54a1i 10 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  Fn  om )
6 fveq2 5632 . . . . . . . 8  |-  ( y  =  (/)  ->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) ) )
76eleq1d 2432 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  e.  A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  (/) )  e.  A
) )
8 fveq2 5632 . . . . . . . 8  |-  ( y  =  z  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  y
)  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z ) )
98eleq1d 2432 . . . . . . 7  |-  ( y  =  z  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  e.  A ) )
10 fveq2 5632 . . . . . . . 8  |-  ( y  =  suc  z  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  =  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z ) )
1110eleq1d 2432 . . . . . . 7  |-  ( y  =  suc  z  -> 
( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A  <->  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
12 ax-1cn 8942 . . . . . . . . 9  |-  1  e.  CC
13 fr0g 6590 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1 )
1412, 13ax-mp 8 . . . . . . . 8  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  (/) )  =  1
15 simpl 443 . . . . . . . 8  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
1  e.  A )
1614, 15syl5eqel 2450 . . . . . . 7  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  (/) )  e.  A
)
17 oveq1 5988 . . . . . . . . . . . 12  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
x  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
1817eleq1d 2432 . . . . . . . . . . 11  |-  ( x  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
( x  +  1 )  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
1918rspccv 2966 . . . . . . . . . 10  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  e.  A  ->  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2019ad2antlr 707 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
21 ovex 6006 . . . . . . . . . . . 12  |-  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  _V
22 eqid 2366 . . . . . . . . . . . . 13  |-  ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  =  ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om )
23 oveq1 5988 . . . . . . . . . . . . 13  |-  ( y  =  n  ->  (
y  +  1 )  =  ( n  + 
1 ) )
24 oveq1 5988 . . . . . . . . . . . . 13  |-  ( y  =  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  ->  (
y  +  1 )  =  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2522, 23, 24frsucmpt2 6594 . . . . . . . . . . . 12  |-  ( ( z  e.  om  /\  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  _V )  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2621, 25mpan2 652 . . . . . . . . . . 11  |-  ( z  e.  om  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  =  ( ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  z )  +  1 ) )
2726eleq1d 2432 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  suc  z )  e.  A  <->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  +  1 )  e.  A ) )
2827adantl 452 . . . . . . . . 9  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z
)  e.  A  <->  ( (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z
)  +  1 )  e.  A ) )
2920, 28sylibrd 225 . . . . . . . 8  |-  ( ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  /\  z  e.  om )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) )
3029expcom 424 . . . . . . 7  |-  ( z  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  z )  e.  A  ->  (
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) `  suc  z )  e.  A
) ) )
317, 9, 11, 16, 30finds2 4787 . . . . . 6  |-  ( y  e.  om  ->  (
( 1  e.  A  /\  A. x  e.  A  ( x  +  1
)  e.  A )  ->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3231com12 27 . . . . 5  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( y  e.  om  ->  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
) )
3332ralrimiv 2710 . . . 4  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  A. y  e.  om  ( ( rec (
( n  e.  _V  |->  ( n  +  1
) ) ,  1 )  |`  om ) `  y )  e.  A
)
34 ffnfv 5796 . . . 4  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  <->  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om )  Fn  om  /\  A. y  e.  om  ( ( rec ( ( n  e. 
_V  |->  ( n  + 
1 ) ) ,  1 )  |`  om ) `  y )  e.  A
) )
355, 33, 34sylanbrc 645 . . 3  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  -> 
( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A )
36 frn 5501 . . 3  |-  ( ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om ) : om --> A  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
3735, 36syl 15 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  ran  ( rec ( ( n  e.  _V  |->  ( n  +  1 ) ) ,  1 )  |`  om )  C_  A
)
383, 37syl5eqss 3308 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   _Vcvv 2873    C_ wss 3238   (/)c0 3543    e. cmpt 4179   suc csuc 4497   omcom 4759   ran crn 4793    |` cres 4794   "cima 4795    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981   reccrdg 6564   CCcc 8882   1c1 8885    + caddc 8887   NNcn 9893
This theorem is referenced by:  nnssre  9897  dfnn2  9906  nnind  9911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-1cn 8942
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-recs 6530  df-rdg 6565  df-nn 9894
  Copyright terms: Public domain W3C validator