Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Unicode version

Theorem pellex 26287
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Distinct variable group:    x, D, y

Proof of Theorem pellex
StepHypRef Expression
1 pellexlem5 26285 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )
2 fzfi 11000 . . . . . . . . . 10  |-  ( 0 ... ( ( abs `  a )  -  1 ) )  e.  Fin
3 xpfi 7096 . . . . . . . . . 10  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin  /\  ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin )  ->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin )
42, 2, 3mp2an 656 . . . . . . . . 9  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  e.  Fin
5 isfinite 7321 . . . . . . . . 9  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin 
<->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om )
64, 5mpbi 201 . . . . . . . 8  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  om
7 nnenom 11008 . . . . . . . . 9  |-  NN  ~~  om
87ensymi 6879 . . . . . . . 8  |-  om  ~~  NN
9 sdomentr 6963 . . . . . . . 8  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om  /\  om  ~~  NN )  ->  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN )
106, 8, 9mp2an 656 . . . . . . 7  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  NN
11 ensym 6878 . . . . . . . 8  |-  ( {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN  ->  NN  ~~  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
1211ad2antll 712 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
13 sdomentr 6963 . . . . . . 7  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN  /\  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
1410, 12, 13sylancr 647 . . . . . 6  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
15 opabssxp 4750 . . . . . . . . . 10  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  C_  ( NN  X.  NN )
1615sseli 3151 . . . . . . . . 9  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  d  e.  ( NN  X.  NN ) )
17 simprrl 743 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  NN )
1817nnzd 10083 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  ZZ )
19 simpllr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  e.  ZZ )
20 simplr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  =/=  0 )
21 nnabscl 11774 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  NN )
2219, 20, 21syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( abs `  a )  e.  NN )
23 zmodfz 10957 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2418, 22, 23syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
25 simprrr 744 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  NN )
2625nnzd 10083 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  ZZ )
27 zmodfz 10957 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2826, 22, 27syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2924, 28jca 520 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3029ex 425 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d
)  e.  NN  /\  ( 2nd `  d )  e.  NN ) )  ->  ( ( ( 1st `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  e.  ( 0 ... ( ( abs `  a
)  -  1 ) ) ) ) )
31 elxp7 6086 . . . . . . . . . 10  |-  ( d  e.  ( NN  X.  NN )  <->  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )
32 opelxp 4707 . . . . . . . . . 10  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  <->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3330, 31, 323imtr4g 263 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  ( NN 
X.  NN )  ->  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3416, 33syl5 30 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3534imp 420 . . . . . . 7  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  e.  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3635adantlrr 704 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  d  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
37 fveq2 5458 . . . . . . . 8  |-  ( d  =  e  ->  ( 1st `  d )  =  ( 1st `  e
) )
3837oveq1d 5807 . . . . . . 7  |-  ( d  =  e  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
39 fveq2 5458 . . . . . . . 8  |-  ( d  =  e  ->  ( 2nd `  d )  =  ( 2nd `  e
) )
4039oveq1d 5807 . . . . . . 7  |-  ( d  =  e  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
4138, 40opeq12d 3778 . . . . . 6  |-  ( d  =  e  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
4214, 36, 41fphpd 26266 . . . . 5  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )
43 eleq1 2318 . . . . . . . . . . . . . 14  |-  ( b  =  f  ->  (
b  e.  NN  <->  f  e.  NN ) )
44 eleq1 2318 . . . . . . . . . . . . . 14  |-  ( c  =  g  ->  (
c  e.  NN  <->  g  e.  NN ) )
4543, 44bi2anan9 848 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b  e.  NN  /\  c  e.  NN )  <->  ( f  e.  NN  /\  g  e.  NN ) ) )
46 oveq1 5799 . . . . . . . . . . . . . . 15  |-  ( b  =  f  ->  (
b ^ 2 )  =  ( f ^
2 ) )
47 oveq1 5799 . . . . . . . . . . . . . . . 16  |-  ( c  =  g  ->  (
c ^ 2 )  =  ( g ^
2 ) )
4847oveq2d 5808 . . . . . . . . . . . . . . 15  |-  ( c  =  g  ->  ( D  x.  ( c ^ 2 ) )  =  ( D  x.  ( g ^ 2 ) ) )
4946, 48oveqan12d 5811 . . . . . . . . . . . . . 14  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  ( ( f ^ 2 )  -  ( D  x.  ( g ^ 2 ) ) ) )
5049eqeq1d 2266 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a  <-> 
( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) )
5145, 50anbi12d 694 . . . . . . . . . . . 12  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )  <->  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) ) )
5251cbvopabv 4062 . . . . . . . . . . 11  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  =  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) }
5352eleq2i 2322 . . . . . . . . . 10  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  e  e.  {
<. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )
5453biimpi 188 . . . . . . . . 9  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) } )
55 elopab 4244 . . . . . . . . . . 11  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  E. b E. c ( d  = 
<. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )
56 elopab 4244 . . . . . . . . . . . . . 14  |-  ( e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  <->  E. f E. g ( e  = 
<. f ,  g >.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) ) )
57 simp3ll 1031 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  b  e.  NN )
58573expb 1157 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  b  e.  NN )
59583ad2ant1 981 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  b  e.  NN )
60 simp3lr 1032 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  c  e.  NN )
61603expb 1157 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  c  e.  NN )
62613ad2ant1 981 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  c  e.  NN )
63 simp1lr 1024 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
64633adant1r 1180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
65 simpl 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  D  e.  NN )
6665ad3antrrr 713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  D  e.  NN )
67663ad2ant1 981 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  D  e.  NN )
68 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  -.  ( sqr `  D )  e.  QQ )
6968ad3antrrr 713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
70693ad2ant1 981 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( sqr `  D )  e.  QQ )
71 simp2ll 1027 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
72713adant2l 1181 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
73 simp2lr 1028 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
74733adant2l 1181 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
75 simp2l 986 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  e  =  <. f ,  g
>. )
76 simp1rl 1025 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =  <. b ,  c
>. )
77 simp3l 988 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =/=  e )
78 simp3 962 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =/=  e )
79 simp2 961 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =  <. b ,  c >.
)
80 simp1 960 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  e  =  <. f ,  g >.
)
8178, 79, 803netr3d 2447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  <. b ,  c >.  =/=  <. f ,  g >. )
82 vex 2766 . . . . . . . . . . . . . . . . . . . . 21  |-  b  e. 
_V
83 vex 2766 . . . . . . . . . . . . . . . . . . . . 21  |-  c  e. 
_V
8482, 83opth 4217 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
b ,  c >.  =  <. f ,  g
>. 
<->  ( b  =  f  /\  c  =  g ) )
8584necon3abii 2451 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
b ,  c >.  =/=  <. f ,  g
>. 
<->  -.  ( b  =  f  /\  c  =  g ) )
8681, 85sylib 190 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  -.  (
b  =  f  /\  c  =  g )
)
8775, 76, 77, 86syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( b  =  f  /\  c  =  g ) )
88 simp1lr 1024 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  =/=  0 )
89 simp1rr 1026 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  /\  (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  /\  (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
90893adant1l 1179 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
91 simp2rr 1030 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a )
92 simp3r 989 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
93 simp3 962 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
94 ovex 5817 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  d )  mod  ( abs `  a
) )  e.  _V
95 ovex 5817 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  _V
9694, 95opth 4217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. 
<->  ( ( ( 1st `  d )  mod  ( abs `  a ) )  =  ( ( 1st `  e )  mod  ( abs `  a ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  =  ( ( 2nd `  e )  mod  ( abs `  a ) ) ) )
9793, 96sylib 190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )
98 simprl 735 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
99 simpll 733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  d  =  <. b ,  c >.
)
10099fveq2d 5462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  ( 1st `  <. b ,  c >. )
)
10182, 83op1st 6062 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. b ,  c
>. )  =  b
102100, 101syl6eq 2306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  b )
103102oveq1d 5807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( b  mod  ( abs `  a ) ) )
104 simplr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  e  =  <. f ,  g >.
)
105104fveq2d 5462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  ( 1st `  <. f ,  g >. )
)
106 vex 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  f  e. 
_V
107 vex 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  g  e. 
_V
108106, 107op1st 6062 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. f ,  g
>. )  =  f
109105, 108syl6eq 2306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  f )
110109oveq1d 5807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  e )  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
11198, 103, 1103eqtr3d 2298 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
112 simprr 736 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
11399fveq2d 5462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  ( 2nd `  <. b ,  c >. )
)
11482, 83op2nd 6063 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. b ,  c
>. )  =  c
115113, 114syl6eq 2306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  c )
116115oveq1d 5807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( c  mod  ( abs `  a ) ) )
117104fveq2d 5462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  ( 2nd `  <. f ,  g >. )
)
118106, 107op2nd 6063 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. f ,  g
>. )  =  g
119117, 118syl6eq 2306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  g )
120119oveq1d 5807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  e )  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
121112, 116, 1203eqtr3d 2298 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
122111, 121jca 520 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
123122ex 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  ->  ( ( ( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
1241233adant3 980 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
12597, 124mpd 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
12676, 75, 92, 125syl3anc 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a
) )  /\  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) ) )
127126simpld 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) ) )
128126simprd 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) )
12959, 62, 64, 67, 70, 72, 74, 87, 88, 90, 91, 127, 128pellexlem6 26286 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
1301293exp 1155 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
131130exlimdvv 2027 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( E. f E. g ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  ->  ( ( d  =/=  e  /\  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13256, 131syl5bi 210 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) }  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
133132ex 425 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
134133exlimdvv 2027 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. b E. c ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
13555, 134syl5bi 210 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
136135imp3a 422 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13754, 136sylan2i 639 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
138137rexlimdvv 2648 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) } E. e  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) )
139138imp 420 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
140139adantlrr 704 . . . . 5  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
14142, 140mpdan 652 . . . 4  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
142141ex 425 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  ->  ( ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
143142rexlimdva 2642 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
1441, 143mpd 16 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2421   E.wrex 2519   _Vcvv 2763   <.cop 3617   class class class wbr 3997   {copab 4050   omcom 4628    X. cxp 4659   ` cfv 4673  (class class class)co 5792   1stc1st 6054   2ndc2nd 6055    ~~ cen 6828    ~< csdm 6830   Fincfn 6831   0cc0 8705   1c1 8706    x. cmul 8710    - cmin 9005   NNcn 9714   2c2 9763   ZZcz 9991   QQcq 10283   ...cfz 10748    mod cmo 10939   ^cexp 11070   sqrcsqr 11683   abscabs 11684
This theorem is referenced by:  pellqrex  26331
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-ico 10628  df-fz 10749  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-divides 12494  df-gcd 12648  df-numer 12768  df-denom 12769
  Copyright terms: Public domain W3C validator