Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem1 Unicode version

Theorem pellexlem1 26782
Description: Lemma for pellex 26788. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem1  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =/=  0 )

Proof of Theorem pellexlem1
StepHypRef Expression
1 nncn 9964 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
213ad2ant2 979 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  CC )
32sqcld 11476 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  CC )
4 nncn 9964 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  CC )
543ad2ant1 978 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  D  e.  CC )
6 nncn 9964 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  CC )
763ad2ant3 980 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  CC )
87sqcld 11476 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  CC )
95, 8mulcld 9064 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
103, 9subeq0ad 9377 . . . 4  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  0  <->  ( A ^ 2 )  =  ( D  x.  ( B ^ 2 ) ) ) )
11 nnne0 9988 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
12113ad2ant3 980 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  =/=  0 )
13 sqne0 11403 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =/=  0  <->  B  =/=  0 ) )
147, 13syl 16 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( B ^ 2 )  =/=  0  <->  B  =/=  0 ) )
1512, 14mpbird 224 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  =/=  0 )
163, 5, 8, 15divmul3d 9780 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  /  ( B ^ 2 ) )  =  D  <->  ( A ^ 2 )  =  ( D  x.  ( B ^ 2 ) ) ) )
17 sqdiv 11402 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( A  /  B
) ^ 2 )  =  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )
1817fveq2d 5691 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) )
192, 7, 12, 18syl3anc 1184 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) )
20 nnre 9963 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  RR )
21203ad2ant2 979 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  RR )
22 nnre 9963 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  RR )
23223ad2ant3 980 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  RR )
2421, 23, 12redivcld 9798 . . . . . . . . 9  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B )  e.  RR )
25 nnnn0 10184 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  NN0 )
2625nn0ge0d 10233 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  0  <_  A )
27263ad2ant2 979 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <_  A )
28 nngt0 9985 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  0  <  B )
29283ad2ant3 980 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <  B )
30 divge0 9835 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
3121, 27, 23, 29, 30syl22anc 1185 . . . . . . . . 9  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <_  ( A  /  B
) )
3224, 31sqrsqd 12177 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( A  /  B
) )
3319, 32eqtr3d 2438 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  =  ( A  /  B
) )
34 nnq 10543 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  QQ )
35343ad2ant2 979 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  QQ )
36 nnq 10543 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  QQ )
37363ad2ant3 980 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  QQ )
38 qdivcl 10551 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
3935, 37, 12, 38syl3anc 1184 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
4033, 39eqeltrd 2478 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  e.  QQ )
41 fveq2 5687 . . . . . . 7  |-  ( ( ( A ^ 2 )  /  ( B ^ 2 ) )  =  D  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  =  ( sqr `  D
) )
4241eleq1d 2470 . . . . . 6  |-  ( ( ( A ^ 2 )  /  ( B ^ 2 ) )  =  D  ->  (
( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) )  e.  QQ  <->  ( sqr `  D )  e.  QQ ) )
4340, 42syl5ibcom 212 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  /  ( B ^ 2 ) )  =  D  ->  ( sqr `  D )  e.  QQ ) )
4416, 43sylbird 227 . . . 4  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( A ^ 2 )  =  ( D  x.  ( B ^
2 ) )  -> 
( sqr `  D
)  e.  QQ ) )
4510, 44sylbid 207 . . 3  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  0  -> 
( sqr `  D
)  e.  QQ ) )
4645necon3bd 2604 . 2  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( -.  ( sqr `  D
)  e.  QQ  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =/=  0 ) )
4746imp 419 1  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =/=  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   QQcq 10530   ^cexp 11337   sqrcsqr 11993
This theorem is referenced by:  pellexlem3  26784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995
  Copyright terms: Public domain W3C validator