Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem1 Unicode version

Theorem pellexlem1 26325
Description: Lemma for pellex 26331. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem1  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =/=  0 )

Proof of Theorem pellexlem1
StepHypRef Expression
1 nncn 9750 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
213ad2ant2 977 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  CC )
32sqcld 11239 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A ^ 2 )  e.  CC )
4 nncn 9750 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  CC )
543ad2ant1 976 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  D  e.  CC )
6 nncn 9750 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  CC )
763ad2ant3 978 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  CC )
87sqcld 11239 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  e.  CC )
95, 8mulcld 8851 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
10 subeq0 9069 . . . . 5  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( D  x.  ( B ^ 2 ) )  e.  CC )  -> 
( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  0  <->  ( A ^ 2 )  =  ( D  x.  ( B ^ 2 ) ) ) )
113, 9, 10syl2anc 642 . . . 4  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  0  <->  ( A ^ 2 )  =  ( D  x.  ( B ^ 2 ) ) ) )
12 nnne0 9774 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
13123ad2ant3 978 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  =/=  0 )
14 sqne0 11166 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =/=  0  <->  B  =/=  0 ) )
157, 14syl 15 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( B ^ 2 )  =/=  0  <->  B  =/=  0 ) )
1613, 15mpbird 223 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( B ^ 2 )  =/=  0 )
173, 5, 8, 16divmul3d 9566 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  /  ( B ^ 2 ) )  =  D  <->  ( A ^ 2 )  =  ( D  x.  ( B ^ 2 ) ) ) )
18 sqdiv 11165 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( A  /  B
) ^ 2 )  =  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )
1918fveq2d 5490 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) )
202, 7, 13, 19syl3anc 1182 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) ) )
21 nnre 9749 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  RR )
22213ad2ant2 977 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  RR )
23 nnre 9749 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  RR )
24233ad2ant3 978 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  RR )
2522, 24, 13redivcld 9584 . . . . . . . . 9  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B )  e.  RR )
26 nnnn0 9968 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  NN0 )
2726nn0ge0d 10017 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  0  <_  A )
28273ad2ant2 977 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <_  A )
29 nngt0 9771 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  0  <  B )
30293ad2ant3 978 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <  B )
31 divge0 9621 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
3222, 28, 24, 30, 31syl22anc 1183 . . . . . . . . 9  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  0  <_  ( A  /  B
) )
3325, 32sqrsqd 11898 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A  /  B ) ^
2 ) )  =  ( A  /  B
) )
3420, 33eqtr3d 2318 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  =  ( A  /  B
) )
35 nnq 10325 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  QQ )
36353ad2ant2 977 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  A  e.  QQ )
37 nnq 10325 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  QQ )
38373ad2ant3 978 . . . . . . . 8  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  B  e.  QQ )
39 qdivcl 10333 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
4036, 38, 13, 39syl3anc 1182 . . . . . . 7  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
4134, 40eqeltrd 2358 . . . . . 6  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  e.  QQ )
42 fveq2 5486 . . . . . . 7  |-  ( ( ( A ^ 2 )  /  ( B ^ 2 ) )  =  D  ->  ( sqr `  ( ( A ^ 2 )  / 
( B ^ 2 ) ) )  =  ( sqr `  D
) )
4342eleq1d 2350 . . . . . 6  |-  ( ( ( A ^ 2 )  /  ( B ^ 2 ) )  =  D  ->  (
( sqr `  (
( A ^ 2 )  /  ( B ^ 2 ) ) )  e.  QQ  <->  ( sqr `  D )  e.  QQ ) )
4441, 43syl5ibcom 211 . . . . 5  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  /  ( B ^ 2 ) )  =  D  ->  ( sqr `  D )  e.  QQ ) )
4517, 44sylbird 226 . . . 4  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( A ^ 2 )  =  ( D  x.  ( B ^
2 ) )  -> 
( sqr `  D
)  e.  QQ ) )
4611, 45sylbid 206 . . 3  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  0  -> 
( sqr `  D
)  e.  QQ ) )
4746necon3bd 2484 . 2  |-  ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  ->  ( -.  ( sqr `  D
)  e.  QQ  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =/=  0 ) )
4847imp 418 1  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =/=  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033    / cdiv 9419   NNcn 9742   2c2 9791   QQcq 10312   ^cexp 11100   sqrcsqr 11714
This theorem is referenced by:  pellexlem3  26327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716
  Copyright terms: Public domain W3C validator