Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Unicode version

Theorem pellfund14 26994
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Distinct variable groups:    x, D    x, A

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 26956 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR+ )
2 pellfundrp 26984 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR+ )
32adantr 451 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  RR+ )
4 pellfundne1 26985 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  =/=  1 )
54adantr 451 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  1 )
6 reglogcl 26986 . . . 4  |-  ( ( A  e.  RR+  /\  (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 )  ->  (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
71, 3, 5, 6syl3anc 1182 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
87flcld 10932 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
9 simpl 443 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  D  e.  ( NN  \NN )
)
10 pell1qrss14 26964 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
11 pellfundex 26982 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
1210, 11sseldd 3183 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
1312adantr 451 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
148znegcld 10121 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
15 pell14qrexpcl 26963 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  (PellFund `  D
)  e.  (Pell14QR `  D
)  /\  -u ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
169, 13, 14, 15syl3anc 1182 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
17 pell14qrmulcl 26959 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  e.  (Pell14QR `  D ) )
1816, 17mpd3an3 1278 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
) )
19 1rp 10360 . . . . . . . . . 10  |-  1  e.  RR+
2019a1i 10 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  e.  RR+ )
21 modge0 10982 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
227, 20, 21syl2anc 642 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
237recnd 8863 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  CC )
248zcnd 10120 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  CC )
2523, 24negsubd 9165 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  -  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
26 modfrac 10986 . . . . . . . . . 10  |-  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
277, 26syl 15 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
2825, 27eqtr4d 2320 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  mod  1 ) )
2922, 28breqtrrd 4051 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) ) )
30 reglog1 26992 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  =  0 )
313, 5, 30syl2anc 642 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  =  0 )
323, 14rpexpcld 11270 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
33 reglogmul 26989 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+  /\  (
(PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 ) )  ->  ( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) ) )
341, 32, 3, 5, 33syl112anc 1186 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  ( ( log `  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
35 reglogexpbas 26993 . . . . . . . . . 10  |-  ( (
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
3614, 3, 5, 35syl12anc 1180 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
3736oveq2d 5876 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
3834, 37eqtrd 2317 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
3929, 31, 383brtr4d 4055 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  <_  (
( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) ) )
401, 32rpmulcld 10408 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )
41 pellfundgt1 26979 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
1  <  (PellFund `  D
) )
4241adantr 451 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <  (PellFund `  D
) )
43 reglogleb 26988 . . . . . . 7  |-  ( ( ( 1  e.  RR+  /\  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
4420, 40, 3, 42, 43syl22anc 1183 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
4539, 44mpbird 223 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
46 modlt 10983 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
477, 20, 46syl2anc 642 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
4828, 47eqbrtrd 4045 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  <  1 )
49 reglogbas 26991 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) )  =  1 )
503, 5, 49syl2anc 642 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) )  =  1 )
5148, 38, 503brtr4d 4055 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  <  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) ) )
52 reglogltb 26987 . . . . . . 7  |-  ( ( ( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+  /\  (PellFund `  D )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
5340, 3, 3, 42, 52syl22anc 1183 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
5451, 53mpbird 223 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
) )
55 pellfund14gap 26983 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
)  /\  ( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /\  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <  (PellFund `  D ) ) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
569, 18, 45, 54, 55syl112anc 1186 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
5724negidd 9149 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  0 )
5857oveq2d 5876 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( (PellFund `  D ) ^ 0 ) )
593rpcnd 10394 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  CC )
603rpne0d 10397 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  0 )
61 expaddz 11148 . . . . . 6  |-  ( ( ( (PellFund `  D
)  e.  CC  /\  (PellFund `  D )  =/=  0 )  /\  (
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ ) )  ->  ( (PellFund `  D
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  =  ( ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) )  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6259, 60, 8, 14, 61syl22anc 1183 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6359exp0d 11241 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ 0 )  =  1 )
6458, 62, 633eqtr3rd 2326 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6556, 64eqtrd 2317 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
66 pell14qrre 26953 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
6766recnd 8863 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  CC )
683, 8rpexpcld 11270 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
6968rpcnd 10394 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
7032rpcnd 10394 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
7132rpne0d 10397 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =/=  0 )
7267, 69, 70, 71mulcan2d 9404 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )
7365, 72mpbid 201 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
74 oveq2 5868 . . . 4  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( (PellFund `  D ) ^ x )  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
7574eqeq2d 2296 . . 3  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( A  =  ( (PellFund `  D ) ^ x )  <->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )
7675rspcev 2886 . 2  |-  ( ( ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  A  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x ) )
778, 73, 76syl2anc 642 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   E.wrex 2546    \ cdif 3151   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    < clt 8869    <_ cle 8870    - cmin 9039   -ucneg 9040    / cdiv 9425   NNcn 9748   ZZcz 10026   RR+crp 10356   |_cfl 10926    mod cmo 10975   ^cexp 11106   logclog 19914  ◻NNcsquarenn 26932  Pell1QRcpell1qr 26933  Pell14QRcpell14qr 26935  PellFundcpellfund 26936
This theorem is referenced by:  pellfund14b  26995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-omul 6486  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-acn 7577  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-numer 12808  df-denom 12809  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-squarenn 26937  df-pell1qr 26938  df-pell14qr 26939  df-pell1234qr 26940  df-pellfund 26941
  Copyright terms: Public domain W3C validator