Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Unicode version

Theorem pellfund14 26394
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Distinct variable groups:    x, D    x, A

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 26356 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR+ )
2 pellfundrp 26384 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR+ )
32adantr 451 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  RR+ )
4 pellfundne1 26385 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  =/=  1 )
54adantr 451 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  1 )
6 reglogcl 26386 . . . 4  |-  ( ( A  e.  RR+  /\  (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 )  ->  (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
71, 3, 5, 6syl3anc 1182 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR )
87flcld 10926 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
9 simpl 443 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  D  e.  ( NN  \NN )
)
10 pell1qrss14 26364 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
11 pellfundex 26382 . . . . . . . . 9  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
1210, 11sseldd 3182 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
1312adantr 451 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  (Pell14QR `  D )
)
148znegcld 10115 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ )
15 pell14qrexpcl 26363 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  (PellFund `  D
)  e.  (Pell14QR `  D
)  /\  -u ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
169, 13, 14, 15syl3anc 1182 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )
17 pell14qrmulcl 26359 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D )  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  (Pell14QR `  D
) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  e.  (Pell14QR `  D ) )
1816, 17mpd3an3 1278 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
) )
19 1rp 10354 . . . . . . . . . 10  |-  1  e.  RR+
2019a1i 10 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  e.  RR+ )
21 modge0 10976 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
227, 20, 21syl2anc 642 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  mod  1
) )
237recnd 8857 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  CC )
248zcnd 10114 . . . . . . . . . 10  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  CC )
2523, 24negsubd 9159 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  -  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
26 modfrac 10980 . . . . . . . . . 10  |-  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
277, 26syl 15 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  =  ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  -  ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
2825, 27eqtr4d 2319 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  mod  1 ) )
2922, 28breqtrrd 4050 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <_  ( (
( log `  A
)  /  ( log `  (PellFund `  D )
) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) ) )
30 reglog1 26392 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  =  0 )
313, 5, 30syl2anc 642 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  =  0 )
323, 14rpexpcld 11264 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
33 reglogmul 26389 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+  /\  (
(PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 ) )  ->  ( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) ) )
341, 32, 3, 5, 33syl112anc 1186 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  ( ( log `  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
35 reglogexpbas 26393 . . . . . . . . . 10  |-  ( (
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D )  =/=  1 ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
3614, 3, 5, 35syl12anc 1180 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) )  =  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) ) )
3736oveq2d 5836 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  +  ( ( log `  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /  ( log `  (PellFund `  D )
) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
3834, 37eqtrd 2316 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  =  ( ( ( log `  A )  /  ( log `  (PellFund `  D ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )
3929, 31, 383brtr4d 4054 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  1
)  /  ( log `  (PellFund `  D )
) )  <_  (
( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) ) )
401, 32rpmulcld 10402 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )
41 pellfundgt1 26379 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
1  <  (PellFund `  D
) )
4241adantr 451 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <  (PellFund `  D
) )
43 reglogleb 26388 . . . . . . 7  |-  ( ( ( 1  e.  RR+  /\  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
4420, 40, 3, 42, 43syl22anc 1183 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  ( ( log `  1 )  / 
( log `  (PellFund `  D ) ) )  <_  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) ) ) )
4539, 44mpbird 223 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  <_  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
46 modlt 10977 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  (PellFund `  D )
) )  e.  RR  /\  1  e.  RR+ )  ->  ( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
477, 20, 46syl2anc 642 . . . . . . . 8  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  mod  1 )  <  1
)
4828, 47eqbrtrd 4044 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( ( log `  A )  /  ( log `  (PellFund `  D
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  <  1 )
49 reglogbas 26391 . . . . . . . 8  |-  ( ( (PellFund `  D )  e.  RR+  /\  (PellFund `  D
)  =/=  1 )  ->  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) )  =  1 )
503, 5, 49syl2anc 642 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) )  =  1 )
5148, 38, 503brtr4d 4054 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( log `  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )  / 
( log `  (PellFund `  D ) ) )  <  ( ( log `  (PellFund `  D )
)  /  ( log `  (PellFund `  D )
) ) )
52 reglogltb 26387 . . . . . . 7  |-  ( ( ( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  RR+  /\  (PellFund `  D )  e.  RR+ )  /\  ( (PellFund `  D
)  e.  RR+  /\  1  <  (PellFund `  D )
) )  ->  (
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
5340, 3, 3, 42, 52syl22anc 1183 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
)  <->  ( ( log `  ( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )  /  ( log `  (PellFund `  D
) ) )  < 
( ( log `  (PellFund `  D ) )  / 
( log `  (PellFund `  D ) ) ) ) )
5451, 53mpbird 223 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  <  (PellFund `  D
) )
55 pellfund14gap 26383 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  e.  (Pell14QR `  D
)  /\  ( 1  <_  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  /\  ( A  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <  (PellFund `  D ) ) )  ->  ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
569, 18, 45, 54, 55syl112anc 1186 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  1 )
5724negidd 9143 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  + 
-u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =  0 )
5857oveq2d 5836 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( (PellFund `  D ) ^ 0 ) )
593rpcnd 10388 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  e.  CC )
603rpne0d 10391 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
(PellFund `  D )  =/=  0 )
61 expaddz 11142 . . . . . 6  |-  ( ( ( (PellFund `  D
)  e.  CC  /\  (PellFund `  D )  =/=  0 )  /\  (
( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  e.  ZZ ) )  ->  ( (PellFund `  D
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D ) ) ) )  +  -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  =  ( ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) )  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6259, 60, 8, 14, 61syl22anc 1183 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) )  +  -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6359exp0d 11235 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ 0 )  =  1 )
6458, 62, 633eqtr3rd 2325 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
1  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
6556, 64eqtrd 2316 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( A  x.  (
(PellFund `  D ) ^ -u ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) ) )
66 pell14qrre 26353 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  RR )
6766recnd 8857 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  e.  CC )
683, 8rpexpcld 11264 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  RR+ )
6968rpcnd 10388 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
7032rpcnd 10388 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  e.  CC )
7132rpne0d 10391 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  =/=  0 )
7267, 69, 70, 71mulcan2d 9398 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
( ( A  x.  ( (PellFund `  D ) ^ -u ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) )  =  ( ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) )  x.  ( (PellFund `  D
) ^ -u ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  <->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )
7365, 72mpbid 201 . 2  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
74 oveq2 5828 . . . 4  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( (PellFund `  D ) ^ x )  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )
7574eqeq2d 2295 . . 3  |-  ( x  =  ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  -> 
( A  =  ( (PellFund `  D ) ^ x )  <->  A  =  ( (PellFund `  D ) ^ ( |_ `  ( ( log `  A
)  /  ( log `  (PellFund `  D )
) ) ) ) ) )
7675rspcev 2885 . 2  |-  ( ( ( |_ `  (
( log `  A
)  /  ( log `  (PellFund `  D )
) ) )  e.  ZZ  /\  A  =  ( (PellFund `  D
) ^ ( |_
`  ( ( log `  A )  /  ( log `  (PellFund `  D
) ) ) ) ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x ) )
778, 73, 76syl2anc 642 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  ->  E. x  e.  ZZ  A  =  ( (PellFund `  D ) ^ x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447   E.wrex 2545    \ cdif 3150   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033   -ucneg 9034    / cdiv 9419   NNcn 9742   ZZcz 10020   RR+crp 10350   |_cfl 10920    mod cmo 10969   ^cexp 11100   logclog 19908  ◻NNcsquarenn 26332  Pell1QRcpell1qr 26333  Pell14QRcpell14qr 26335  PellFundcpellfund 26336
This theorem is referenced by:  pellfund14b  26395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-numer 12802  df-denom 12803  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-squarenn 26337  df-pell1qr 26338  df-pell14qr 26339  df-pell1234qr 26340  df-pellfund 26341
  Copyright terms: Public domain W3C validator