MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Unicode version

Theorem perfect 20472
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer  N is a perfect number (that is, its divisor sum is  2 N) if and only if it is of the form  2 ^ ( p  - 
1 )  x.  (
2 ^ p  - 
1 ), where  2 ^ p  -  1 is prime (a Mersenne prime). (It follows from this that  p is also prime.) (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Distinct variable group:    N, p

Proof of Theorem perfect
StepHypRef Expression
1 simplr 731 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  2  ||  N )
2 2prm 12776 . . . . . . . 8  |-  2  e.  Prime
3 simpll 730 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  NN )
4 pcelnn 12924 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
( 2  pCnt  N
)  e.  NN  <->  2  ||  N ) )
52, 3, 4sylancr 644 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  e.  NN  <->  2  ||  N
) )
61, 5mpbird 223 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN )
76nnzd 10118 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  ZZ )
87peano2zd 10122 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  +  1 )  e.  ZZ )
9 pcdvds 12918 . . . . . . . . 9  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
2 ^ ( 2 
pCnt  N ) )  ||  N )
102, 3, 9sylancr 644 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  ||  N )
11 2nn 9879 . . . . . . . . . 10  |-  2  e.  NN
126nnnn0d 10020 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN0 )
13 nnexpcl 11118 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( 2  pCnt  N
)  e.  NN0 )  ->  ( 2 ^ (
2  pCnt  N )
)  e.  NN )
1411, 12, 13sylancr 644 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  NN )
15 nndivdvds 12539 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( 2 ^ (
2  pCnt  N )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
163, 14, 15syl2anc 642 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
1710, 16mpbid 201 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e.  NN )
18 pcndvds2 12922 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  -.  2  ||  ( N  / 
( 2 ^ (
2  pCnt  N )
) ) )
192, 3, 18sylancr 644 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  -.  2  ||  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )
20 simpr 447 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
21 nncn 9756 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
2221ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  CC )
2314nncnd 9764 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  CC )
2414nnne0d 9792 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =/=  0 )
2522, 23, 24divcan2d 9540 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  N )
2625oveq2d 5876 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 1 
sigma  N ) )
2725oveq2d 5876 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) )  =  ( 2  x.  N ) )
2820, 26, 273eqtr4d 2327 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) ) )
296, 17, 19, 28perfectlem2 20471 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime  /\  ( N  / 
( 2 ^ (
2  pCnt  N )
) )  =  ( ( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 ) ) )
3029simprd 449 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
3129simpld 445 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime )
3230, 31eqeltrrd 2360 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 )  e. 
Prime )
336nncnd 9764 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  CC )
34 ax-1cn 8797 . . . . . . . . 9  |-  1  e.  CC
35 pncan 9059 . . . . . . . . 9  |-  ( ( ( 2  pCnt  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 
pCnt  N )  +  1 )  -  1 )  =  ( 2  pCnt 
N ) )
3633, 34, 35sylancl 643 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
( 2  pCnt  N
)  +  1 )  -  1 )  =  ( 2  pCnt  N
) )
3736eqcomd 2290 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  =  ( ( ( 2  pCnt 
N )  +  1 )  -  1 ) )
3837oveq2d 5876 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
3938, 30oveq12d 5878 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  ( ( 2 ^ ( ( ( 2  pCnt  N
)  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 ) ) )
4025, 39eqtr3d 2319 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
41 oveq2 5868 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ p )  =  ( 2 ^ (
( 2  pCnt  N
)  +  1 ) ) )
4241oveq1d 5875 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ p )  -  1 )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
4342eleq1d 2351 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( 2 ^ p
)  -  1 )  e.  Prime  <->  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime )
)
44 oveq1 5867 . . . . . . . . 9  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( p  -  1 )  =  ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )
4544oveq2d 5876 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ ( p  - 
1 ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
4645, 42oveq12d 5878 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) )  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
4746eqeq2d 2296 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  <->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) )
4843, 47anbi12d 691 . . . . 5  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  <->  ( (
( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) ) )
4948rspcev 2886 . . . 4  |-  ( ( ( ( 2  pCnt 
N )  +  1 )  e.  ZZ  /\  ( ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2  pCnt  N )  +  1 )  - 
1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) ) ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
508, 32, 40, 49syl12anc 1180 . . 3  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  -  1 )  e. 
Prime  /\  N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
5150ex 423 . 2  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
52 perfect1 20469 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( ( 2 ^ p )  x.  ( ( 2 ^ p )  -  1 ) ) )
53 2cn 9818 . . . . . . . . 9  |-  2  e.  CC
54 mersenne 20468 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  Prime )
55 prmnn 12763 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  NN )
5654, 55syl 15 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  NN )
57 expm1t 11132 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  p  e.  NN )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
5853, 56, 57sylancr 644 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
59 nnm1nn0 10007 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  (
p  -  1 )  e.  NN0 )
6056, 59syl 15 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( p  -  1 )  e.  NN0 )
61 expcl 11123 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( p  -  1
)  e.  NN0 )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
6253, 60, 61sylancr 644 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
63 mulcom 8825 . . . . . . . . 9  |-  ( ( ( 2 ^ (
p  -  1 ) )  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6462, 53, 63sylancl 643 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6558, 64eqtrd 2317 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6665oveq1d 5875 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( ( 2  x.  ( 2 ^ ( p  - 
1 ) ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )
6753a1i 10 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  2  e.  CC )
68 prmnn 12763 . . . . . . . . 9  |-  ( ( ( 2 ^ p
)  -  1 )  e.  Prime  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
6968adantl 452 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
7069nncnd 9764 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  CC )
7167, 62, 70mulassd 8860 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2  x.  ( 2 ^ (
p  -  1 ) ) )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( 2  x.  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
7252, 66, 713eqtrd 2321 . . . . 5  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
73 oveq2 5868 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
1  sigma  N )  =  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
74 oveq2 5868 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
2  x.  N )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
7573, 74eqeq12d 2299 . . . . 5  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
( 1  sigma  N )  =  ( 2  x.  N )  <->  ( 1 
sigma  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
7672, 75syl5ibrcom 213 . . . 4  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  ( 1  sigma  N )  =  ( 2  x.  N ) ) )
7776impr 602 . . 3  |-  ( ( p  e.  ZZ  /\  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
7877rexlimiva 2664 . 2  |-  ( E. p  e.  ZZ  (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  -> 
( 1  sigma  N )  =  ( 2  x.  N ) )
7951, 78impbid1 194 1  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546   class class class wbr 4025  (class class class)co 5860   CCcc 8737   1c1 8740    + caddc 8742    x. cmul 8744    - cmin 9039    / cdiv 9425   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ^cexp 11106    || cdivides 12533   Primecprime 12760    pCnt cpc 12891    sigma csgm 20335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-prm 12761  df-pc 12892  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-cxp 19917  df-sgm 20341
  Copyright terms: Public domain W3C validator