MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem2 Structured version   Unicode version

Theorem perfectlem2 21014
Description: Lemma for perfect 21015. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
perfectlem.1  |-  ( ph  ->  A  e.  NN )
perfectlem.2  |-  ( ph  ->  B  e.  NN )
perfectlem.3  |-  ( ph  ->  -.  2  ||  B
)
perfectlem.4  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
Assertion
Ref Expression
perfectlem2  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )

Proof of Theorem perfectlem2
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectlem.2 . . . 4  |-  ( ph  ->  B  e.  NN )
2 1re 9090 . . . . . 6  |-  1  e.  RR
32a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
4 perfectlem.1 . . . . . . . 8  |-  ( ph  ->  A  e.  NN )
5 perfectlem.3 . . . . . . . 8  |-  ( ph  ->  -.  2  ||  B
)
6 perfectlem.4 . . . . . . . 8  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
74, 1, 5, 6perfectlem1 21013 . . . . . . 7  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
87simp3d 971 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN )
98nnred 10015 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  RR )
101nnred 10015 . . . . 5  |-  ( ph  ->  B  e.  RR )
118nnge1d 10042 . . . . 5  |-  ( ph  ->  1  <_  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
12 2cn 10070 . . . . . . . . . . 11  |-  2  e.  CC
13 exp1 11387 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
1412, 13ax-mp 8 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
15 df-2 10058 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
1614, 15eqtri 2456 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
17 2re 10069 . . . . . . . . . . 11  |-  2  e.  RR
1817a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
19 1z 10311 . . . . . . . . . . 11  |-  1  e.  ZZ
2019a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
214peano2nnd 10017 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  1 )  e.  NN )
2221nnzd 10374 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
23 1lt2 10142 . . . . . . . . . . 11  |-  1  <  2
2423a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  <  2 )
254nnrpd 10647 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
26 ltaddrp 10644 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
272, 25, 26sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( 1  +  A ) )
28 ax-1cn 9048 . . . . . . . . . . . 12  |-  1  e.  CC
294nncnd 10016 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
30 addcom 9252 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3128, 29, 30sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3227, 31breqtrd 4236 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( A  +  1 ) )
33 ltexp2a 11431 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  1  e.  ZZ  /\  ( A  +  1
)  e.  ZZ )  /\  ( 1  <  2  /\  1  < 
( A  +  1 ) ) )  -> 
( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3418, 20, 22, 24, 32, 33syl32anc 1192 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3516, 34syl5eqbrr 4246 . . . . . . . 8  |-  ( ph  ->  ( 1  +  1 )  <  ( 2 ^ ( A  + 
1 ) ) )
367simp1d 969 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
3736nnred 10015 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  RR )
383, 3, 37ltaddsubd 9626 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  1 )  <  (
2 ^ ( A  +  1 ) )  <->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
3935, 38mpbid 202 . . . . . . 7  |-  ( ph  ->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
40 peano2rem 9367 . . . . . . . . 9  |-  ( ( 2 ^ ( A  +  1 ) )  e.  RR  ->  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
4137, 40syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
42 0lt1 9550 . . . . . . . . 9  |-  0  <  1
4342a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
44 expgt1 11418 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( A  +  1
)  e.  NN  /\  1  <  2 )  -> 
1  <  ( 2 ^ ( A  + 
1 ) ) )
4518, 21, 24, 44syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 2 ^ ( A  + 
1 ) ) )
46 posdif 9521 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2 ^ ( A  +  1 ) )  e.  RR )  ->  ( 1  < 
( 2 ^ ( A  +  1 ) )  <->  0  <  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
472, 37, 46sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
2 ^ ( A  +  1 ) )  <->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
4845, 47mpbid 202 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
491nngt0d 10043 . . . . . . . 8  |-  ( ph  ->  0  <  B )
50 ltdiv2OLD 9896 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR  /\  B  e.  RR )  /\  ( 0  <  1  /\  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 )  /\  0  <  B ) )  ->  ( 1  < 
( ( 2 ^ ( A  +  1 ) )  -  1 )  <->  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
513, 41, 10, 43, 48, 49, 50syl33anc 1199 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
( 2 ^ ( A  +  1 ) )  -  1 )  <-> 
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
5239, 51mpbid 202 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) )
531nncnd 10016 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
5453div1d 9782 . . . . . 6  |-  ( ph  ->  ( B  /  1
)  =  B )
5552, 54breqtrd 4236 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  B )
563, 9, 10, 11, 55lelttrd 9228 . . . 4  |-  ( ph  ->  1  <  B )
57 eluz2b2 10548 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  <->  ( B  e.  NN  /\  1  < 
B ) )
581, 56, 57sylanbrc 646 . . 3  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
59 fzfid 11312 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... B
)  e.  Fin )
60 sgmss 20889 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B ) )
611, 60syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )
62 ssfi 7329 . . . . . . . . . . . 12  |-  ( ( ( 1 ... B
)  e.  Fin  /\  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6359, 61, 62syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6463ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
65 ssrab2 3428 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  B }  C_  NN
6665a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  C_  NN )
6766sselda 3348 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN )
6867nnred 10015 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  RR )
6967nnnn0d 10274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN0 )
7069nn0ge0d 10277 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  0  <_  k )
71 df-tp 3822 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )
72 prssi 3954 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  B  e.  NN )  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
738, 1, 72syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
7473ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
75 simplrl 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  NN )
7675snssd 3943 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { n }  C_  NN )
7774, 76unssd 3523 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )  C_  NN )
7871, 77syl5eqss 3392 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  NN )
79 eltpi 3852 . . . . . . . . . . . . 13  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  n }  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n ) )
807simp2d 970 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )
8180nnzd 10374 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
828nnzd 10374 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )
83 dvdsmul2 12872 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )  ->  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  (
( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
8481, 82, 83syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
8580nncnd 10016 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  CC )
8680nnne0d 10044 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  =/=  0 )
8753, 85, 86divcan2d 9792 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  B )
8884, 87breqtrd 4236 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  B )
89 breq1 4215 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
x  ||  B  <->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ||  B ) )
9088, 89syl5ibrcom 214 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  x  ||  B
) )
9190ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ->  x  ||  B ) )
921nnzd 10374 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  ZZ )
93 iddvds 12863 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ZZ  ->  B  ||  B )
9492, 93syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  B )
95 breq1 4215 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
x  ||  B  <->  B  ||  B
) )
9694, 95syl5ibrcom 214 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  B  ->  x  ||  B
) )
9796ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  B  ->  x  ||  B ) )
98 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  ||  B )
99 breq1 4215 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
x  ||  B  <->  n  ||  B
) )
10098, 99syl5ibrcom 214 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  n  ->  x  ||  B ) )
10191, 97, 1003jaod 1248 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n )  ->  x  ||  B
) )
10279, 101syl5 30 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  ->  x  ||  B
) )
103102imp 419 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  x  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  ->  x  ||  B )
10478, 103ssrabdv 3422 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  { x  e.  NN  |  x  ||  B } )
10564, 68, 70, 104fsumless 12575 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
106 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
107 disjsn 3868 . . . . . . . . . . . 12  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/)  <->  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
108106, 107sylibr 204 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/) )
10971a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } ) )
110 tpfi 7382 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin
111110a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin )
11278sselda 3348 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  NN )
113112nncnd 10016 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  CC )
114108, 109, 111, 113fsumsplit 12533 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { n } k ) )
1158nncnd 10016 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )
116 id 20 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
117116sumsn 12534 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )  ->  sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
1188, 115, 117syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
119 id 20 . . . . . . . . . . . . . . . 16  |-  ( k  =  B  ->  k  =  B )
120119sumsn 12534 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  NN  /\  B  e.  CC )  -> 
sum_ k  e.  { B } k  =  B )
1211, 53, 120syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  { B } k  =  B )
122118, 121oveq12d 6099 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  + 
sum_ k  e.  { B } k )  =  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B
) )
123 incom 3533 . . . . . . . . . . . . . . 15  |-  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)
1249, 55gtned 9208 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
125 disjsn2 3869 . . . . . . . . . . . . . . . 16  |-  ( B  =/=  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
126124, 125syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( { B }  i^i  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
127123, 126syl5eqr 2482 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)  =  (/) )
128 df-pr 3821 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } )
129128a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } ) )
130 prfi 7381 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin
131130a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin )
13273sselda 3348 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  NN )
133132nncnd 10016 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  CC )
134127, 129, 131, 133fsumsplit 12533 . . . . . . . . . . . . 13  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) } k  +  sum_ k  e.  { B } k ) )
13585, 53mulcld 9108 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  e.  CC )
13653, 135, 85, 86divdird 9828 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
13736nncnd 10016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  CC )
13828a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
139137, 138, 53subdird 9490 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  ( 1  x.  B ) ) )
14053mulid2d 9106 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  x.  B
)  =  B )
141140oveq2d 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  -  (
1  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
142139, 141eqtrd 2468 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
143142oveq2d 6097 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) ) )
144137, 53mulcld 9108 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  e.  CC )
14553, 144pncan3d 9414 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B
)  -  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
146143, 145eqtrd 2468 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
147146oveq1d 6096 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
148137, 53, 85, 86divassd 9825 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
149147, 148eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
15053, 85, 86divcan3d 9795 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  B )
151150oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B ) )
152136, 149, 1513eqtr3d 2476 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  +  B ) )
153122, 134, 1523eqtr4d 2478 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
154153ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
15575nncnd 10016 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  CC )
156 id 20 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  k  =  n )
157156sumsn 12534 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  n  e.  CC )  -> 
sum_ k  e.  {
n } k  =  n )
158155, 155, 157syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { n } k  =  n )
159154, 158oveq12d 6099 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
n } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
160114, 159eqtrd 2468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
) )
1614nnnn0d 10274 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN0 )
162 expp1 11388 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
16312, 161, 162sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
164 2nn 10133 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
165 nnexpcl 11394 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
166164, 161, 165sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ A
)  e.  NN )
167166nncnd 10016 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2 ^ A
)  e.  CC )
168 mulcom 9076 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ A
)  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
169167, 12, 168sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
170163, 169eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( 2  x.  ( 2 ^ A ) ) )
171170oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( 2  x.  ( 2 ^ A ) )  x.  B ) )
17212a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  2  e.  CC )
173172, 167, 53mulassd 9111 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 2 ^ A
) )  x.  B
)  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )
174 2prm 13095 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
175 coprm 13100 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  Prime  /\  B  e.  ZZ )  ->  ( -.  2  ||  B  <->  ( 2  gcd  B )  =  1 ) )
176174, 92, 175sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  2  ||  B 
<->  ( 2  gcd  B
)  =  1 ) )
1775, 176mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  gcd  B
)  =  1 )
178 2z 10312 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ZZ
179178a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2  e.  ZZ )
180 rpexp1i 13121 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  A  e.  NN0 )  ->  (
( 2  gcd  B
)  =  1  -> 
( ( 2 ^ A )  gcd  B
)  =  1 ) )
181179, 92, 161, 180syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  gcd 
B )  =  1  ->  ( ( 2 ^ A )  gcd 
B )  =  1 ) )
182177, 181mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  gcd  B
)  =  1 )
183 sgmmul 20985 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ A )  e.  NN  /\  B  e.  NN  /\  ( ( 2 ^ A )  gcd  B
)  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ A )  x.  B
) )  =  ( ( 1  sigma  ( 2 ^ A ) )  x.  ( 1  sigma  B ) ) )
184138, 166, 1, 182, 183syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( ( 1 
sigma  ( 2 ^ A
) )  x.  (
1  sigma  B ) ) )
185 pncan 9311 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
18629, 28, 185sylancl 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  + 
1 )  -  1 )  =  A )
187186oveq2d 6097 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ (
( A  +  1 )  -  1 ) )  =  ( 2 ^ A ) )
188187oveq2d 6097 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( 1  sigma 
( 2 ^ A
) ) )
189 1sgm2ppw 20984 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +  1 )  e.  NN  ->  (
1  sigma  ( 2 ^ ( ( A  + 
1 )  -  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
19021, 189syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
191188, 190eqtr3d 2470 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  sigma  ( 2 ^ A ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
192191oveq1d 6096 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  sigma 
( 2 ^ A
) )  x.  (
1  sigma  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
193184, 6, 1923eqtr3d 2476 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( 2 ^ A
)  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
194171, 173, 1933eqtrd 2472 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
195194oveq1d 6096 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1 
sigma  B ) )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
196 1nn0 10237 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
197 sgmnncl 20930 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  B  e.  NN )  ->  ( 1  sigma  B )  e.  NN )
198196, 1, 197sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  sigma  B )  e.  NN )
199198nncnd 10016 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  sigma  B )  e.  CC )
200199, 85, 86divcan3d 9795 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) )  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( 1  sigma  B ) )
201195, 148, 2003eqtr3d 2476 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( 1  sigma  B ) )
202 sgmval 20925 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  B  e.  NN )  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 ) )
20328, 1, 202sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 ) )
204 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  {
x  e.  NN  |  x  ||  B } )
20565, 204sseldi 3346 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN )
206205nncnd 10016 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  CC )
207206cxp1d 20597 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  ( k  ^ c  1 )  =  k )
208207sumeq2dv 12497 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^ c  1 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k )
209201, 203, 2083eqtrrd 2473 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B } k  =  ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
210209ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
211105, 160, 2103brtr3d 4241 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
21237, 9remulcld 9116 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
213212ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
21475nnrpd 10647 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR+ )
215213, 214ltaddrpd 10677 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
21675nnred 10015 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR )
217213, 216readdcld 9115 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  e.  RR )
218213, 217ltnled 9220 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
219215, 218mpbid 202 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
)  <_  ( (
2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
220211, 219condan 770 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  ->  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
221 elpri 3834 . . . . . . 7  |-  ( n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) )
222220, 221syl 16 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )
223222expr 599 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( n 
||  B  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) ) )
224223ralrimiva 2789 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
2253, 56gtned 9208 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  1 )
226225necomd 2687 . . . . . . . . 9  |-  ( ph  ->  1  =/=  B )
227 1nn 10011 . . . . . . . . . . . . 13  |-  1  e.  NN
228227a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  NN )
229 1dvds 12864 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  1  ||  B )
23092, 229syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  1  ||  B )
231 breq1 4215 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
n  ||  B  <->  1  ||  B ) )
232 eqeq1 2442 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  <->  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
233 eqeq1 2442 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  B  <->  1  =  B ) )
234232, 233orbi12d 691 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B )  <->  ( 1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) ) )
235231, 234imbi12d 312 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
( n  ||  B  ->  ( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  <->  ( 1 
||  B  ->  (
1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
236235rspcv 3048 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  ->  (
1  ||  B  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
237228, 224, 230, 236syl3c 59 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
238237ord 367 . . . . . . . . . 10  |-  ( ph  ->  ( -.  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =  B ) )
239238necon1ad 2671 . . . . . . . . 9  |-  ( ph  ->  ( 1  =/=  B  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
240226, 239mpd 15 . . . . . . . 8  |-  ( ph  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
241240eqeq2d 2447 . . . . . . 7  |-  ( ph  ->  ( n  =  1  <-> 
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
242241orbi1d 684 . . . . . 6  |-  ( ph  ->  ( ( n  =  1  \/  n  =  B )  <->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
243242imbi2d 308 . . . . 5  |-  ( ph  ->  ( ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  ( n  ||  B  ->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
244243ralbidv 2725 . . . 4  |-  ( ph  ->  ( A. n  e.  NN  ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  A. n  e.  NN  ( n  ||  B  ->  ( n  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
245224, 244mpbird 224 . . 3  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) )
246 isprm2 13087 . . 3  |-  ( B  e.  Prime  <->  ( B  e.  ( ZZ>= `  2 )  /\  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) ) )
24758, 245, 246sylanbrc 646 . 2  |-  ( ph  ->  B  e.  Prime )
248212ltp1d 9941 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
249 peano2re 9239 . . . . . 6  |-  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  e.  RR )
250212, 249syl 16 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  e.  RR )
251212, 250ltnled 9220 . . . 4  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  <  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
252248, 251mpbid 202 . . 3  |-  ( ph  ->  -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
253205nnred 10015 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  RR )
254205nnnn0d 10274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN0 )
255254nn0ge0d 10277 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  0  <_  k
)
256 df-tp 3822 . . . . . . . . . 10  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } )
257 snssi 3942 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  { 1 }  C_  NN )
258227, 257mp1i 12 . . . . . . . . . . 11  |-  ( ph  ->  { 1 }  C_  NN )
25973, 258unssd 3523 . . . . . . . . . 10  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  u.  {
1 } )  C_  NN )
260256, 259syl5eqss 3392 . . . . . . . . 9  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
261 eltpi 3852 . . . . . . . . . . 11  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  1 }  ->  ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 ) )
262 breq1 4215 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
x  ||  B  <->  1  ||  B ) )
263230, 262syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  =  1  ->  x  ||  B
) )
26490, 96, 2633jaod 1248 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 )  ->  x  ||  B ) )
265261, 264syl5 30 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 }  ->  x  ||  B ) )
266265imp 419 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } )  ->  x  ||  B )
267260, 266ssrabdv 3422 . . . . . . . 8  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  { x  e.  NN  |  x  ||  B } )
26863, 253, 255, 267fsumless 12575 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
269268adantr 452 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  <_  sum_ k  e.  {
x  e.  NN  |  x  ||  B } k )
27053, 85, 86diveq1ad 9799 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  <-> 
B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
271270necon3bid 2636 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =/=  1  <->  B  =/=  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
272271biimpar 472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  =/=  1 )
273272necomd 2687 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
274226adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  B )
275273, 274jca 519 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
1  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  /\  1  =/=  B ) )
276 neanior 2689 . . . . . . . . . . 11  |-  ( ( 1  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  /\  1  =/=  B )  <->  -.  (
1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) )
277275, 276sylib 189 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  ( 1  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
278 1ex 9086 . . . . . . . . . . 11  |-  1  e.  _V
279278elpr 3832 . . . . . . . . . 10  |-  ( 1  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  <->  ( 1  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
280277, 279sylnibr 297 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  1  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
281 disjsn 3868 . . . . . . . . 9  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
282280, 281sylibr 204 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/) )
283256a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } ) )
284 tpfi 7382 . . . . . . . . 9  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin
285284a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin )
286260adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
287286sselda 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  NN )
288287nncnd 10016 . . . . . . . 8  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  CC )
289282, 283, 285, 288fsumsplit 12533 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  { 1 } k ) )
290 id 20 . . . . . . . . . . 11  |-  ( k  =  1  ->  k  =  1 )
291290sumsn 12534 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC )  -> 
sum_ k  e.  {
1 } k  =  1 )
292138, 28, 291sylancl 644 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  {
1 } k  =  1 )
293153, 292oveq12d 6099 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { 1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 ) )
294293adantr 452 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
295289, 294eqtrd 2468 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
296209adantr 452 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
297269, 295, 2963brtr3d 4241 . . . . 5  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
298297ex 424 . . . 4  |-  ( ph  ->  ( B  =/=  (
( 2 ^ ( A  +  1 ) )  -  1 )  ->  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
299298necon1bd 2672 . . 3  |-  ( ph  ->  ( -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
300252, 299mpd 15 . 2  |-  ( ph  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
301247, 300jca 519 1  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709    u. cun 3318    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   {cpr 3815   {ctp 3816   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   ...cfz 11043   ^cexp 11382   sum_csu 12479    || cdivides 12852    gcd cgcd 13006   Primecprime 13079    ^ c ccxp 20453    sigma csgm 20878
This theorem is referenced by:  perfect  21015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-sgm 20884
  Copyright terms: Public domain W3C validator