Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Unicode version

Theorem pexmidALTN 29334
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 29309. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables  X,  M,  p,  q,  r in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a  |-  A  =  ( Atoms `  K )
pexmidALT.p  |-  .+  =  ( + P `  K
)
pexmidALT.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pexmidALTN  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 21 . . . 4  |-  ( X  =  (/)  ->  X  =  (/) )
2 fveq2 5458 . . . 4  |-  ( X  =  (/)  ->  (  ._|_  `  X )  =  ( 
._|_  `  (/) ) )
31, 2oveq12d 5810 . . 3  |-  ( X  =  (/)  ->  ( X 
.+  (  ._|_  `  X
) )  =  (
(/)  .+  (  ._|_  `  (/) ) ) )
4 pexmidALT.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
5 pexmidALT.o . . . . . . . 8  |-  ._|_  =  ( _|_ P `  K
)
64, 5pol0N 29265 . . . . . . 7  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
7 eqimss 3205 . . . . . . 7  |-  ( ( 
._|_  `  (/) )  =  A  ->  (  ._|_  `  (/) )  C_  A )
86, 7syl 17 . . . . . 6  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  C_  A
)
9 pexmidALT.p . . . . . . 7  |-  .+  =  ( + P `  K
)
104, 9padd02 29168 . . . . . 6  |-  ( ( K  e.  HL  /\  (  ._|_  `  (/) )  C_  A )  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  (  ._|_  `  (/) ) )
118, 10mpdan 652 . . . . 5  |-  ( K  e.  HL  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  (  ._|_  `  (/) ) )
1211, 6eqtrd 2290 . . . 4  |-  ( K  e.  HL  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  A )
1312ad2antrr 709 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( (/)  .+  (  ._|_  `  (/) ) )  =  A )
143, 13sylan9eqr 2312 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X
) )  =  X )  /\  X  =  (/) )  ->  ( X 
.+  (  ._|_  `  X
) )  =  A )
154, 9, 5pexmidlem8N 29333 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
1615anassrs 632 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X
) )  =  X )  /\  X  =/=  (/) )  ->  ( X 
.+  (  ._|_  `  X
) )  =  A )
1714, 16pm2.61dane 2499 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421    C_ wss 3127   (/)c0 3430   ` cfv 4673  (class class class)co 5792   Atomscatm 28620   HLchlt 28707   + Pcpadd 29151   _|_ PcpolN 29258
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-polarityN 29259  df-psubclN 29291
  Copyright terms: Public domain W3C validator