Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Unicode version

Theorem pexmidALTN 30614
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 30589. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables  X,  M,  p,  q,  r in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a  |-  A  =  ( Atoms `  K )
pexmidALT.p  |-  .+  =  ( + P `  K
)
pexmidALT.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pexmidALTN  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 20 . . . 4  |-  ( X  =  (/)  ->  X  =  (/) )
2 fveq2 5719 . . . 4  |-  ( X  =  (/)  ->  (  ._|_  `  X )  =  ( 
._|_  `  (/) ) )
31, 2oveq12d 6090 . . 3  |-  ( X  =  (/)  ->  ( X 
.+  (  ._|_  `  X
) )  =  (
(/)  .+  (  ._|_  `  (/) ) ) )
4 pexmidALT.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
5 pexmidALT.o . . . . . . . 8  |-  ._|_  =  ( _|_ P `  K
)
64, 5pol0N 30545 . . . . . . 7  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
7 eqimss 3392 . . . . . . 7  |-  ( ( 
._|_  `  (/) )  =  A  ->  (  ._|_  `  (/) )  C_  A )
86, 7syl 16 . . . . . 6  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  C_  A
)
9 pexmidALT.p . . . . . . 7  |-  .+  =  ( + P `  K
)
104, 9padd02 30448 . . . . . 6  |-  ( ( K  e.  HL  /\  (  ._|_  `  (/) )  C_  A )  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  (  ._|_  `  (/) ) )
118, 10mpdan 650 . . . . 5  |-  ( K  e.  HL  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  (  ._|_  `  (/) ) )
1211, 6eqtrd 2467 . . . 4  |-  ( K  e.  HL  ->  ( (/)  .+  (  ._|_  `  (/) ) )  =  A )
1312ad2antrr 707 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( (/)  .+  (  ._|_  `  (/) ) )  =  A )
143, 13sylan9eqr 2489 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X
) )  =  X )  /\  X  =  (/) )  ->  ( X 
.+  (  ._|_  `  X
) )  =  A )
154, 9, 5pexmidlem8N 30613 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
1615anassrs 630 . 2  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X
) )  =  X )  /\  X  =/=  (/) )  ->  ( X 
.+  (  ._|_  `  X
) )  =  A )
1714, 16pm2.61dane 2676 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    C_ wss 3312   (/)c0 3620   ` cfv 5445  (class class class)co 6072   Atomscatm 29900   HLchlt 29987   + Pcpadd 30431   _|_ PcpolN 30538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-polarityN 30539  df-psubclN 30571
  Copyright terms: Public domain W3C validator