Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Unicode version

Theorem pexmidN 29408
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 29392. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 29406. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a  |-  A  =  ( Atoms `  K )
pexmid.p  |-  .+  =  ( + P `  K
)
pexmid.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pexmidN  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 733 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  K  e.  HL )
2 simplr 734 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  A )
3 pexmid.a . . . . . . 7  |-  A  =  ( Atoms `  K )
4 pexmid.o . . . . . . 7  |-  ._|_  =  ( _|_ P `  K
)
53, 4polssatN 29347 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
65adantr 453 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  C_  A )
7 pexmid.p . . . . . 6  |-  .+  =  ( + P `  K
)
83, 7, 4poldmj1N 29367 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  (  ._|_  `  X )  C_  A )  ->  (  ._|_  `  ( X  .+  (  ._|_  `  X )
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
91, 2, 6, 8syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  ( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
103, 4pnonsingN 29372 . . . . 5  |-  ( ( K  e.  HL  /\  (  ._|_  `  X )  C_  A )  ->  (
(  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
111, 6, 10syl2anc 645 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
129, 11eqtrd 2290 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  (/) )
1312fveq2d 5462 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( 
._|_  `  (/) ) )
14 simpr 449 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  X )
15 eqid 2258 . . . . . . 7  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
163, 4, 15ispsubclN 29376 . . . . . 6  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
1716ad2antrr 709 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  e.  (
PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
182, 14, 17mpbir2and 893 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  e.  ( PSubCl `  K ) )
193, 4, 15polsubclN 29391 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
2019adantr 453 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
213, 42polssN 29354 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
2221adantr 453 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
237, 4, 15osumclN 29406 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  (  ._|_  `  X )  e.  ( PSubCl `  K )
)  /\  X  C_  (  ._|_  `  (  ._|_  `  X
) ) )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
241, 18, 20, 22, 23syl31anc 1190 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
254, 15psubcli2N 29378 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  (  ._|_  `  X
) ) ) )  =  ( X  .+  (  ._|_  `  X )
) )
261, 24, 25syl2anc 645 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( X  .+  (  ._|_  `  X ) ) )
273, 4pol0N 29348 . . 3  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
2827ad2antrr 709 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (/) )  =  A )
2913, 26, 283eqtr3d 2298 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3126    C_ wss 3127   (/)c0 3430   ` cfv 4673  (class class class)co 5792   Atomscatm 28703   HLchlt 28790   + Pcpadd 29234   _|_ PcpolN 29341   PSubClcpscN 29373
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-polarityN 29342  df-psubclN 29374
  Copyright terms: Public domain W3C validator