MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Unicode version

Theorem pf1mpf 19977
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q  |-  Q  =  ran  (eval1 `  R )
pf1f.b  |-  B  =  ( Base `  R
)
mpfpf1.q  |-  E  =  ran  ( 1o eval  R
)
Assertion
Ref Expression
pf1mpf  |-  ( F  e.  Q  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E )
Distinct variable groups:    x, B    x, F    x, Q    x, R
Allowed substitution hint:    E( x)

Proof of Theorem pf1mpf
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3  |-  Q  =  ran  (eval1 `  R )
21pf1rcl 19974 . 2  |-  ( F  e.  Q  ->  R  e.  CRing )
3 id 21 . . . 4  |-  ( F  e.  Q  ->  F  e.  Q )
43, 1syl6eleq 2528 . . 3  |-  ( F  e.  Q  ->  F  e.  ran  (eval1 `  R ) )
5 eqid 2438 . . . . . 6  |-  (eval1 `  R
)  =  (eval1 `  R
)
6 eqid 2438 . . . . . 6  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
7 eqid 2438 . . . . . 6  |-  ( R  ^s  B )  =  ( R  ^s  B )
8 pf1f.b . . . . . 6  |-  B  =  ( Base `  R
)
95, 6, 7, 8evl1rhm 19954 . . . . 5  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
102, 9syl 16 . . . 4  |-  ( F  e.  Q  ->  (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
11 eqid 2438 . . . . 5  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
12 eqid 2438 . . . . 5  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
1311, 12rhmf 15832 . . . 4  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
14 ffn 5594 . . . 4  |-  ( (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) )  ->  (eval1 `  R
)  Fn  ( Base `  (Poly1 `  R ) ) )
15 fvelrnb 5777 . . . 4  |-  ( (eval1 `  R )  Fn  ( Base `  (Poly1 `  R ) )  ->  ( F  e. 
ran  (eval1 `  R )  <->  E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F ) )
1610, 13, 14, 154syl 20 . . 3  |-  ( F  e.  Q  ->  ( F  e.  ran  (eval1 `  R
)  <->  E. y  e.  (
Base `  (Poly1 `  R
) ) ( (eval1 `  R ) `  y
)  =  F ) )
174, 16mpbid 203 . 2  |-  ( F  e.  Q  ->  E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F )
18 eqid 2438 . . . . . . . 8  |-  ( 1o eval  R )  =  ( 1o eval  R )
19 eqid 2438 . . . . . . . 8  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
20 eqid 2438 . . . . . . . . 9  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
216, 20, 11ply1bas 16598 . . . . . . . 8  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  ( 1o mPoly  R ) )
225, 18, 8, 19, 21evl1val 19953 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( (eval1 `  R
) `  y )  =  ( ( ( 1o eval  R ) `  y )  o.  (
z  e.  B  |->  ( 1o  X.  { z } ) ) ) )
2322coeq1d 5037 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( ( 1o eval  R ) `
 y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) ) )
24 coass 5391 . . . . . . 7  |-  ( ( ( ( 1o eval  R
) `  y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (
( z  e.  B  |->  ( 1o  X.  {
z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )
25 df1o2 6739 . . . . . . . . . . 11  |-  1o  =  { (/) }
26 fvex 5745 . . . . . . . . . . . 12  |-  ( Base `  R )  e.  _V
278, 26eqeltri 2508 . . . . . . . . . . 11  |-  B  e. 
_V
28 0ex 4342 . . . . . . . . . . 11  |-  (/)  e.  _V
29 eqid 2438 . . . . . . . . . . 11  |-  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) )  =  ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) )
3025, 27, 28, 29mapsncnv 7063 . . . . . . . . . 10  |-  `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  =  ( z  e.  B  |->  ( 1o  X.  { z } ) )
3130coeq1i 5035 . . . . . . . . 9  |-  ( `' ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  ( ( z  e.  B  |->  ( 1o  X.  { z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )
3225, 27, 28, 29mapsnf1o2 7064 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) : ( B  ^m  1o )
-1-1-onto-> B
33 f1ococnv1 5707 . . . . . . . . . 10  |-  ( ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) : ( B  ^m  1o ) -1-1-onto-> B  ->  ( `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3432, 33mp1i 12 . . . . . . . . 9  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( `' ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3531, 34syl5eqr 2484 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( z  e.  B  |->  ( 1o 
X.  { z } ) )  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  =  (  _I  |`  ( B  ^m  1o ) ) )
3635coeq2d 5038 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( 1o eval  R ) `  y )  o.  (
( z  e.  B  |->  ( 1o  X.  {
z } ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) ) )
3724, 36syl5eq 2482 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( ( 1o eval  R ) `
 y )  o.  ( z  e.  B  |->  ( 1o  X.  {
z } ) ) )  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) ) )
38 eqid 2438 . . . . . . . 8  |-  ( R  ^s  ( B  ^m  1o ) )  =  ( R  ^s  ( B  ^m  1o ) )
39 eqid 2438 . . . . . . . 8  |-  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )  =  ( Base `  ( R  ^s  ( B  ^m  1o ) ) )
40 simpl 445 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  R  e.  CRing )
41 ovex 6109 . . . . . . . . 9  |-  ( B  ^m  1o )  e. 
_V
4241a1i 11 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( B  ^m  1o )  e.  _V )
43 1on 6734 . . . . . . . . . . 11  |-  1o  e.  On
4418, 8, 19, 38evlrhm 19951 . . . . . . . . . . 11  |-  ( ( 1o  e.  On  /\  R  e.  CRing )  -> 
( 1o eval  R )  e.  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
4543, 44mpan 653 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  ( 1o eval  R )  e.  ( ( 1o mPoly  R ) RingHom  ( R  ^s  ( B  ^m  1o ) ) ) )
4621, 39rhmf 15832 . . . . . . . . . 10  |-  ( ( 1o eval  R )  e.  ( ( 1o mPoly  R
) RingHom  ( R  ^s  ( B  ^m  1o ) ) )  ->  ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
4745, 46syl 16 . . . . . . . . 9  |-  ( R  e.  CRing  ->  ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
4847ffvelrnda 5873 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ( Base `  ( R  ^s  ( B  ^m  1o ) ) ) )
4938, 8, 39, 40, 42, 48pwselbas 13716 . . . . . . 7  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
) : ( B  ^m  1o ) --> B )
50 fcoi1 5620 . . . . . . 7  |-  ( ( ( 1o eval  R ) `
 y ) : ( B  ^m  1o )
--> B  ->  ( (
( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) )  =  ( ( 1o eval  R
) `  y )
)
5149, 50syl 16 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( ( 1o eval  R ) `  y )  o.  (  _I  |`  ( B  ^m  1o ) ) )  =  ( ( 1o eval  R
) `  y )
)
5223, 37, 513eqtrd 2474 . . . . 5  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( ( 1o eval  R ) `  y
) )
53 ffn 5594 . . . . . . . 8  |-  ( ( 1o eval  R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  ( B  ^m  1o ) ) )  ->  ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) ) )
5447, 53syl 16 . . . . . . 7  |-  ( R  e.  CRing  ->  ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) ) )
55 fnfvelrn 5870 . . . . . . 7  |-  ( ( ( 1o eval  R )  Fn  ( Base `  (Poly1 `  R ) )  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ran  ( 1o eval  R ) )
5654, 55sylan 459 . . . . . 6  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  ran  ( 1o eval  R ) )
57 mpfpf1.q . . . . . 6  |-  E  =  ran  ( 1o eval  R
)
5856, 57syl6eleqr 2529 . . . . 5  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( 1o eval  R ) `  y
)  e.  E )
5952, 58eqeltrd 2512 . . . 4  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  e.  E )
60 coeq1 5033 . . . . 5  |-  ( ( (eval1 `  R ) `  y )  =  F  ->  ( ( (eval1 `  R ) `  y
)  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `
 (/) ) ) )  =  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) ) )
6160eleq1d 2504 . . . 4  |-  ( ( (eval1 `  R ) `  y )  =  F  ->  ( ( ( (eval1 `  R ) `  y )  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E  <->  ( F  o.  ( x  e.  ( B  ^m  1o ) 
|->  ( x `  (/) ) ) )  e.  E ) )
6259, 61syl5ibcom 213 . . 3  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( (eval1 `  R ) `  y
)  =  F  -> 
( F  o.  (
x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E ) )
6362rexlimdva 2832 . 2  |-  ( R  e.  CRing  ->  ( E. y  e.  ( Base `  (Poly1 `  R ) ) ( (eval1 `  R ) `  y )  =  F  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E ) )
642, 17, 63sylc 59 1  |-  ( F  e.  Q  ->  ( F  o.  ( x  e.  ( B  ^m  1o )  |->  ( x `  (/) ) ) )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   _Vcvv 2958   (/)c0 3630   {csn 3816    e. cmpt 4269    _I cid 4496   Oncon0 4584    X. cxp 4879   `'ccnv 4880   ran crn 4882    |` cres 4883    o. ccom 4885    Fn wfn 5452   -->wf 5453   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084   1oc1o 6720    ^m cmap 7021   Basecbs 13474    ^s cpws 13675   CRingccrg 15666   RingHom crh 15822   mPoly cmpl 16413   eval cevl 16415  PwSer1cps1 16574  Poly1cpl1 16576  eval1ce1 16578
This theorem is referenced by:  pf1ind  19980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-fzo 11141  df-seq 11329  df-hash 11624  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-hom 13558  df-cco 13559  df-prds 13676  df-pws 13678  df-0g 13732  df-gsum 13733  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-mhm 14743  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mulg 14820  df-subg 14946  df-ghm 15009  df-cntz 15121  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-rnghom 15824  df-subrg 15871  df-lmod 15957  df-lss 16014  df-lsp 16053  df-assa 16377  df-asp 16378  df-ascl 16379  df-psr 16422  df-mvr 16423  df-mpl 16424  df-evls 16425  df-evl 16426  df-opsr 16430  df-psr1 16581  df-ply1 16583  df-evl1 16585
  Copyright terms: Public domain W3C validator