MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php Unicode version

Theorem php 6930
Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6925 through phplem4 6928, nneneq 6929, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
Assertion
Ref Expression
php  |-  ( ( A  e.  om  /\  B  C.  A )  ->  -.  A  ~~  B )

Proof of Theorem php
StepHypRef Expression
1 0ss 3390 . . . . . . . 8  |-  (/)  C_  B
2 sspsstr 3201 . . . . . . . 8  |-  ( (
(/)  C_  B  /\  B  C.  A )  ->  (/)  C.  A
)
31, 2mpan 654 . . . . . . 7  |-  ( B 
C.  A  ->  (/)  C.  A
)
4 0pss 3399 . . . . . . . 8  |-  ( (/)  C.  A  <->  A  =/=  (/) )
5 df-ne 2414 . . . . . . . 8  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
64, 5bitri 242 . . . . . . 7  |-  ( (/)  C.  A  <->  -.  A  =  (/) )
73, 6sylib 190 . . . . . 6  |-  ( B 
C.  A  ->  -.  A  =  (/) )
8 nn0suc 4571 . . . . . . 7  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
98orcanai 884 . . . . . 6  |-  ( ( A  e.  om  /\  -.  A  =  (/) )  ->  E. x  e.  om  A  =  suc  x )
107, 9sylan2 462 . . . . 5  |-  ( ( A  e.  om  /\  B  C.  A )  ->  E. x  e.  om  A  =  suc  x )
11 pssnel 3425 . . . . . . . . . 10  |-  ( B 
C.  suc  x  ->  E. y ( y  e. 
suc  x  /\  -.  y  e.  B )
)
12 pssss 3192 . . . . . . . . . . . . . . . . 17  |-  ( B 
C.  suc  x  ->  B 
C_  suc  x )
13 ssdif 3225 . . . . . . . . . . . . . . . . . 18  |-  ( B 
C_  suc  x  ->  ( B  \  { y } )  C_  ( suc  x  \  { y } ) )
14 disjsn 3597 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  i^i  { y } )  =  (/)  <->  -.  y  e.  B )
15 disj3 3406 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  i^i  { y } )  =  (/)  <->  B  =  ( B  \  { y } ) )
1614, 15bitr3i 244 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  y  e.  B  <->  B  =  ( B  \  { y } ) )
17 sseq1 3120 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  ( B  \  { y } )  ->  ( B  C_  ( suc  x  \  {
y } )  <->  ( B  \  { y } ) 
C_  ( suc  x  \  { y } ) ) )
1816, 17sylbi 189 . . . . . . . . . . . . . . . . . 18  |-  ( -.  y  e.  B  -> 
( B  C_  ( suc  x  \  { y } )  <->  ( B  \  { y } ) 
C_  ( suc  x  \  { y } ) ) )
1913, 18syl5ibr 214 . . . . . . . . . . . . . . . . 17  |-  ( -.  y  e.  B  -> 
( B  C_  suc  x  ->  B  C_  ( suc  x  \  { y } ) ) )
20 vex 2730 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
2120sucex 4493 . . . . . . . . . . . . . . . . . . 19  |-  suc  x  e.  _V
22 difss 3220 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  x  \  { y } )  C_  suc  x
2321, 22ssexi 4056 . . . . . . . . . . . . . . . . . 18  |-  ( suc  x  \  { y } )  e.  _V
24 ssdomg 6793 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  x  \  {
y } )  e. 
_V  ->  ( B  C_  ( suc  x  \  {
y } )  ->  B  ~<_  ( suc  x  \  { y } ) ) )
2523, 24ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  ( B 
C_  ( suc  x  \  { y } )  ->  B  ~<_  ( suc  x  \  { y } ) )
2612, 19, 25syl56 32 . . . . . . . . . . . . . . . 16  |-  ( -.  y  e.  B  -> 
( B  C.  suc  x  ->  B  ~<_  ( suc  x  \  { y } ) ) )
2726imp 420 . . . . . . . . . . . . . . 15  |-  ( ( -.  y  e.  B  /\  B  C.  suc  x
)  ->  B  ~<_  ( suc  x  \  { y } ) )
28 vex 2730 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
2920, 28phplem3 6927 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  om  /\  y  e.  suc  x )  ->  x  ~~  ( suc  x  \  { y } ) )
30 ensym 6796 . . . . . . . . . . . . . . . 16  |-  ( x 
~~  ( suc  x  \  { y } )  ->  ( suc  x  \  { y } ) 
~~  x )
3129, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  om  /\  y  e.  suc  x )  ->  ( suc  x  \  { y } ) 
~~  x )
32 domentr 6805 . . . . . . . . . . . . . . 15  |-  ( ( B  ~<_  ( suc  x  \  { y } )  /\  ( suc  x  \  { y } ) 
~~  x )  ->  B  ~<_  x )
3327, 31, 32syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( ( -.  y  e.  B  /\  B  C.  suc  x )  /\  (
x  e.  om  /\  y  e.  suc  x ) )  ->  B  ~<_  x )
3433exp43 598 . . . . . . . . . . . . 13  |-  ( -.  y  e.  B  -> 
( B  C.  suc  x  ->  ( x  e. 
om  ->  ( y  e. 
suc  x  ->  B  ~<_  x ) ) ) )
3534com4r 82 . . . . . . . . . . . 12  |-  ( y  e.  suc  x  -> 
( -.  y  e.  B  ->  ( B  C.  suc  x  ->  (
x  e.  om  ->  B  ~<_  x ) ) ) )
3635imp 420 . . . . . . . . . . 11  |-  ( ( y  e.  suc  x  /\  -.  y  e.  B
)  ->  ( B  C.  suc  x  ->  (
x  e.  om  ->  B  ~<_  x ) ) )
3736exlimiv 2023 . . . . . . . . . 10  |-  ( E. y ( y  e. 
suc  x  /\  -.  y  e.  B )  ->  ( B  C.  suc  x  ->  ( x  e. 
om  ->  B  ~<_  x ) ) )
3811, 37mpcom 34 . . . . . . . . 9  |-  ( B 
C.  suc  x  ->  ( x  e.  om  ->  B  ~<_  x ) )
39 endomtr 6804 . . . . . . . . . . . 12  |-  ( ( suc  x  ~~  B  /\  B  ~<_  x )  ->  suc  x  ~<_  x )
40 sssucid 4362 . . . . . . . . . . . . 13  |-  x  C_  suc  x
41 ssdomg 6793 . . . . . . . . . . . . 13  |-  ( suc  x  e.  _V  ->  ( x  C_  suc  x  ->  x  ~<_  suc  x )
)
4221, 40, 41mp2 19 . . . . . . . . . . . 12  |-  x  ~<_  suc  x
43 sbth 6866 . . . . . . . . . . . 12  |-  ( ( suc  x  ~<_  x  /\  x  ~<_  suc  x )  ->  suc  x  ~~  x
)
4439, 42, 43sylancl 646 . . . . . . . . . . 11  |-  ( ( suc  x  ~~  B  /\  B  ~<_  x )  ->  suc  x  ~~  x
)
4544expcom 426 . . . . . . . . . 10  |-  ( B  ~<_  x  ->  ( suc  x  ~~  B  ->  suc  x  ~~  x ) )
46 peano2b 4563 . . . . . . . . . . . . 13  |-  ( x  e.  om  <->  suc  x  e. 
om )
47 nnord 4555 . . . . . . . . . . . . 13  |-  ( suc  x  e.  om  ->  Ord 
suc  x )
4846, 47sylbi 189 . . . . . . . . . . . 12  |-  ( x  e.  om  ->  Ord  suc  x )
4920sucid 4364 . . . . . . . . . . . 12  |-  x  e. 
suc  x
50 nordeq 4304 . . . . . . . . . . . 12  |-  ( ( Ord  suc  x  /\  x  e.  suc  x )  ->  suc  x  =/=  x )
5148, 49, 50sylancl 646 . . . . . . . . . . 11  |-  ( x  e.  om  ->  suc  x  =/=  x )
52 nneneq 6929 . . . . . . . . . . . . . 14  |-  ( ( suc  x  e.  om  /\  x  e.  om )  ->  ( suc  x  ~~  x 
<->  suc  x  =  x ) )
5346, 52sylanb 460 . . . . . . . . . . . . 13  |-  ( ( x  e.  om  /\  x  e.  om )  ->  ( suc  x  ~~  x 
<->  suc  x  =  x ) )
5453anidms 629 . . . . . . . . . . . 12  |-  ( x  e.  om  ->  ( suc  x  ~~  x  <->  suc  x  =  x ) )
5554necon3bbid 2446 . . . . . . . . . . 11  |-  ( x  e.  om  ->  ( -.  suc  x  ~~  x  <->  suc  x  =/=  x ) )
5651, 55mpbird 225 . . . . . . . . . 10  |-  ( x  e.  om  ->  -.  suc  x  ~~  x )
5745, 56nsyli 135 . . . . . . . . 9  |-  ( B  ~<_  x  ->  ( x  e.  om  ->  -.  suc  x  ~~  B ) )
5838, 57syli 35 . . . . . . . 8  |-  ( B 
C.  suc  x  ->  ( x  e.  om  ->  -. 
suc  x  ~~  B
) )
5958com12 29 . . . . . . 7  |-  ( x  e.  om  ->  ( B  C.  suc  x  ->  -.  suc  x  ~~  B
) )
60 psseq2 3185 . . . . . . . 8  |-  ( A  =  suc  x  -> 
( B  C.  A  <->  B 
C.  suc  x )
)
61 breq1 3923 . . . . . . . . 9  |-  ( A  =  suc  x  -> 
( A  ~~  B  <->  suc  x  ~~  B ) )
6261notbid 287 . . . . . . . 8  |-  ( A  =  suc  x  -> 
( -.  A  ~~  B 
<->  -.  suc  x  ~~  B ) )
6360, 62imbi12d 313 . . . . . . 7  |-  ( A  =  suc  x  -> 
( ( B  C.  A  ->  -.  A  ~~  B )  <->  ( B  C.  suc  x  ->  -.  suc  x  ~~  B ) ) )
6459, 63syl5ibrcom 215 . . . . . 6  |-  ( x  e.  om  ->  ( A  =  suc  x  -> 
( B  C.  A  ->  -.  A  ~~  B
) ) )
6564rexlimiv 2623 . . . . 5  |-  ( E. x  e.  om  A  =  suc  x  ->  ( B  C.  A  ->  -.  A  ~~  B ) )
6610, 65syl 17 . . . 4  |-  ( ( A  e.  om  /\  B  C.  A )  -> 
( B  C.  A  ->  -.  A  ~~  B
) )
6766ex 425 . . 3  |-  ( A  e.  om  ->  ( B  C.  A  ->  ( B  C.  A  ->  -.  A  ~~  B ) ) )
6867pm2.43d 46 . 2  |-  ( A  e.  om  ->  ( B  C.  A  ->  -.  A  ~~  B ) )
6968imp 420 1  |-  ( ( A  e.  om  /\  B  C.  A )  ->  -.  A  ~~  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   _Vcvv 2727    \ cdif 3075    i^i cin 3077    C_ wss 3078    C. wpss 3079   (/)c0 3362   {csn 3544   class class class wbr 3920   Ord word 4284   suc csuc 4287   omcom 4547    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  php2  6931  php3  6932
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-er 6546  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator