MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Unicode version

Theorem php3 7049
Description: Corollary of Pigeonhole Principle. If  A is finite and  B is a proper subset of  A, the  B is strictly less numerous than  A. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
php3  |-  ( ( A  e.  Fin  /\  B  C.  A )  ->  B  ~<  A )

Proof of Theorem php3
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6887 . . 3  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 relen 6870 . . . . . . . . 9  |-  Rel  ~~
32brrelexi 4731 . . . . . . . 8  |-  ( A 
~~  x  ->  A  e.  _V )
4 pssss 3273 . . . . . . . 8  |-  ( B 
C.  A  ->  B  C_  A )
5 ssdomg 6909 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( B  C_  A  ->  B  ~<_  A ) )
65imp 418 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  C_  A )  ->  B  ~<_  A )
73, 4, 6syl2an 463 . . . . . . 7  |-  ( ( A  ~~  x  /\  B  C.  A )  ->  B  ~<_  A )
87adantll 694 . . . . . 6  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  B  ~<_  A )
9 bren 6873 . . . . . . . . 9  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
10 imass2 5051 . . . . . . . . . . . . . . . . 17  |-  ( B 
C_  A  ->  (
f " B ) 
C_  ( f " A ) )
114, 10syl 15 . . . . . . . . . . . . . . . 16  |-  ( B 
C.  A  ->  (
f " B ) 
C_  ( f " A ) )
1211adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C_  ( f " A ) )
13 pssnel 3521 . . . . . . . . . . . . . . . . 17  |-  ( B 
C.  A  ->  E. y
( y  e.  A  /\  -.  y  e.  B
) )
14 eldif 3164 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A  \  B )  <->  ( y  e.  A  /\  -.  y  e.  B ) )
15 f1ofn 5475 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> x  ->  f  Fn  A )
16 difss 3305 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A 
\  B )  C_  A
17 fnfvima 5758 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  Fn  A  /\  ( A  \  B ) 
C_  A  /\  y  e.  ( A  \  B
) )  ->  (
f `  y )  e.  ( f " ( A  \  B ) ) )
18173expia 1153 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  A  /\  ( A  \  B ) 
C_  A )  -> 
( y  e.  ( A  \  B )  ->  ( f `  y )  e.  ( f " ( A 
\  B ) ) ) )
1915, 16, 18sylancl 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  (
f `  y )  e.  ( f " ( A  \  B ) ) ) )
20 dff1o3 5480 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : A -1-1-onto-> x  <->  ( f : A -onto-> x  /\  Fun  `' f ) )
2120simprbi 450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : A -1-1-onto-> x  ->  Fun  `' f )
22 imadif 5329 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Fun  `' f  ->  ( f
" ( A  \  B ) )  =  ( ( f " A )  \  (
f " B ) ) )
2321, 22syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> x  ->  ( f
" ( A  \  B ) )  =  ( ( f " A )  \  (
f " B ) ) )
2423eleq2d 2352 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : A -1-1-onto-> x  ->  ( ( f `  y )  e.  ( f "
( A  \  B
) )  <->  ( f `  y )  e.  ( ( f " A
)  \  ( f " B ) ) ) )
2519, 24sylibd 205 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  (
f `  y )  e.  ( ( f " A )  \  (
f " B ) ) ) )
26 n0i 3462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f `  y )  e.  ( ( f
" A )  \ 
( f " B
) )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
2725, 26syl6 29 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) ) )
2814, 27syl5bir 209 . . . . . . . . . . . . . . . . . . 19  |-  ( f : A -1-1-onto-> x  ->  ( ( y  e.  A  /\  -.  y  e.  B
)  ->  -.  (
( f " A
)  \  ( f " B ) )  =  (/) ) )
2928exlimdv 1666 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  ( E. y ( y  e.  A  /\  -.  y  e.  B )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) ) )
3029imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> x  /\  E. y ( y  e.  A  /\  -.  y  e.  B ) )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
3113, 30sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
32 ssdif0 3515 . . . . . . . . . . . . . . . 16  |-  ( ( f " A ) 
C_  ( f " B )  <->  ( (
f " A ) 
\  ( f " B ) )  =  (/) )
3331, 32sylnibr 296 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  -.  ( f " A
)  C_  ( f " B ) )
34 dfpss3 3264 . . . . . . . . . . . . . . 15  |-  ( ( f " B ) 
C.  ( f " A )  <->  ( (
f " B ) 
C_  ( f " A )  /\  -.  ( f " A
)  C_  ( f " B ) ) )
3512, 33, 34sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C.  ( f " A ) )
36 imadmrn 5026 . . . . . . . . . . . . . . . . 17  |-  ( f
" dom  f )  =  ran  f
37 f1odm 5478 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  dom  f  =  A )
3837imaeq2d 5014 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> x  ->  ( f
" dom  f )  =  ( f " A ) )
39 f1ofo 5481 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  f : A -onto-> x )
40 forn 5456 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -onto-> x  ->  ran  f  =  x
)
4139, 40syl 15 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> x  ->  ran  f  =  x )
4236, 38, 413eqtr3a 2341 . . . . . . . . . . . . . . . 16  |-  ( f : A -1-1-onto-> x  ->  ( f
" A )  =  x )
4342psseq2d 3271 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-onto-> x  ->  ( ( f " B ) 
C.  ( f " A )  <->  ( f " B )  C.  x
) )
4443adantr 451 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( ( f " B )  C.  (
f " A )  <-> 
( f " B
)  C.  x )
)
4535, 44mpbid 201 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C.  x )
46 php 7047 . . . . . . . . . . . . 13  |-  ( ( x  e.  om  /\  ( f " B
)  C.  x )  ->  -.  x  ~~  (
f " B ) )
4745, 46sylan2 460 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  -.  x  ~~  ( f " B
) )
48 f1of1 5473 . . . . . . . . . . . . . . . 16  |-  ( f : A -1-1-onto-> x  ->  f : A -1-1-> x )
49 f1ores 5489 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-> x  /\  B  C_  A )  ->  ( f  |`  B ) : B -1-1-onto-> (
f " B ) )
5048, 4, 49syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f  |`  B ) : B -1-1-onto-> ( f " B
) )
51 vex 2793 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
5251resex 4997 . . . . . . . . . . . . . . . . 17  |-  ( f  |`  B )  e.  _V
53 f1oeq1 5465 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f  |`  B )  ->  (
y : B -1-1-onto-> ( f
" B )  <->  ( f  |`  B ) : B -1-1-onto-> (
f " B ) ) )
5452, 53spcev 2877 . . . . . . . . . . . . . . . 16  |-  ( ( f  |`  B ) : B -1-1-onto-> ( f " B
)  ->  E. y 
y : B -1-1-onto-> ( f
" B ) )
55 bren 6873 . . . . . . . . . . . . . . . 16  |-  ( B 
~~  ( f " B )  <->  E. y 
y : B -1-1-onto-> ( f
" B ) )
5654, 55sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( f  |`  B ) : B -1-1-onto-> ( f " B
)  ->  B  ~~  ( f " B
) )
5750, 56syl 15 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  B  ~~  ( f " B ) )
58 entr 6915 . . . . . . . . . . . . . . 15  |-  ( ( x  ~~  B  /\  B  ~~  ( f " B ) )  ->  x  ~~  ( f " B ) )
5958expcom 424 . . . . . . . . . . . . . 14  |-  ( B 
~~  ( f " B )  ->  (
x  ~~  B  ->  x 
~~  ( f " B ) ) )
6057, 59syl 15 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( x  ~~  B  ->  x  ~~  ( f
" B ) ) )
6160adantl 452 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  ( x  ~~  B  ->  x  ~~  ( f " B
) ) )
6247, 61mtod 168 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  -.  x  ~~  B )
6362exp32 588 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
f : A -1-1-onto-> x  -> 
( B  C.  A  ->  -.  x  ~~  B
) ) )
6463exlimdv 1666 . . . . . . . . 9  |-  ( x  e.  om  ->  ( E. f  f : A
-1-1-onto-> x  ->  ( B  C.  A  ->  -.  x  ~~  B ) ) )
659, 64syl5bi 208 . . . . . . . 8  |-  ( x  e.  om  ->  ( A  ~~  x  ->  ( B  C.  A  ->  -.  x  ~~  B ) ) )
6665imp31 421 . . . . . . 7  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  -.  x  ~~  B )
67 entr 6915 . . . . . . . . . 10  |-  ( ( B  ~~  A  /\  A  ~~  x )  ->  B  ~~  x )
6867ex 423 . . . . . . . . 9  |-  ( B 
~~  A  ->  ( A  ~~  x  ->  B  ~~  x ) )
69 ensym 6912 . . . . . . . . 9  |-  ( B 
~~  x  ->  x  ~~  B )
7068, 69syl6com 31 . . . . . . . 8  |-  ( A 
~~  x  ->  ( B  ~~  A  ->  x  ~~  B ) )
7170ad2antlr 707 . . . . . . 7  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  ( B  ~~  A  ->  x  ~~  B ) )
7266, 71mtod 168 . . . . . 6  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  -.  B  ~~  A )
73 brsdom 6886 . . . . . 6  |-  ( B 
~<  A  <->  ( B  ~<_  A  /\  -.  B  ~~  A ) )
748, 72, 73sylanbrc 645 . . . . 5  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  B  ~<  A )
7574exp31 587 . . . 4  |-  ( x  e.  om  ->  ( A  ~~  x  ->  ( B  C.  A  ->  B  ~<  A ) ) )
7675rexlimiv 2663 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  ( B 
C.  A  ->  B  ~<  A ) )
771, 76sylbi 187 . 2  |-  ( A  e.  Fin  ->  ( B  C.  A  ->  B  ~<  A ) )
7877imp 418 1  |-  ( ( A  e.  Fin  /\  B  C.  A )  ->  B  ~<  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   E.wrex 2546   _Vcvv 2790    \ cdif 3151    C_ wss 3154    C. wpss 3155   (/)c0 3457   class class class wbr 4025   omcom 4658   `'ccnv 4690   dom cdm 4691   ran crn 4692    |` cres 4693   "cima 4694   Fun wfun 5251    Fn wfn 5252   -1-1->wf1 5254   -onto->wfo 5255   -1-1-onto->wf1o 5256   ` cfv 5257    ~~ cen 6862    ~<_ cdom 6863    ~< csdm 6864   Fincfn 6865
This theorem is referenced by:  pssinf  7075  f1finf1o  7088  findcard3  7102  fofinf1o  7139  ackbij1b  7867  fincssdom  7951  fin23lem25  7952  canthp1lem2  8277  pwfseqlem4  8286  uzindi  11045  pgpssslw  14927  pgpfaclem2  15319  ppiltx  20417  finminlem  26242  symggen  27422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869
  Copyright terms: Public domain W3C validator