MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem1 Unicode version

Theorem phplem1 7036
Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
phplem1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )

Proof of Theorem phplem1
StepHypRef Expression
1 nnord 4664 . . 3  |-  ( A  e.  om  ->  Ord  A )
2 nordeq 4411 . . . 4  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
3 disjsn2 3696 . . . 4  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
42, 3syl 17 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  ( { A }  i^i  { B } )  =  (/) )
51, 4sylan 459 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  i^i  { B } )  =  (/) )
6 undif4 3513 . . 3  |-  ( ( { A }  i^i  { B } )  =  (/)  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( ( { A }  u.  A )  \  { B } ) )
7 df-suc 4398 . . . . 5  |-  suc  A  =  ( A  u.  { A } )
8 uncom 3321 . . . . 5  |-  ( A  u.  { A }
)  =  ( { A }  u.  A
)
97, 8eqtri 2305 . . . 4  |-  suc  A  =  ( { A }  u.  A )
109difeq1i 3292 . . 3  |-  ( suc 
A  \  { B } )  =  ( ( { A }  u.  A )  \  { B } )
116, 10syl6eqr 2335 . 2  |-  ( ( { A }  i^i  { B } )  =  (/)  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc 
A  \  { B } ) )
125, 11syl 17 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448    \ cdif 3151    u. cun 3152    i^i cin 3153   (/)c0 3457   {csn 3642   Ord word 4391   suc csuc 4394   omcom 4656
This theorem is referenced by:  phplem2  7037
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-tr 4116  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator