MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Unicode version

Theorem phtpcer 19022
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.)
Assertion
Ref Expression
phtpcer  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )

Proof of Theorem phtpcer
Dummy variables  f 
g  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 19020 . . . 4  |-  Rel  (  ~=ph  `  J )
21a1i 11 . . 3  |-  (  T. 
->  Rel  (  ~=ph  `  J
) )
3 isphtpc 19021 . . . . . 6  |-  ( x (  ~=ph  `  J ) y  <->  ( x  e.  ( II  Cn  J
)  /\  y  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
y )  =/=  (/) ) )
43simp2bi 974 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  y  e.  ( II  Cn  J
) )
53simp1bi 973 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  x  e.  ( II  Cn  J
) )
63simp3bi 975 . . . . . . 7  |-  ( x (  ~=ph  `  J ) y  ->  ( x
( PHtpy `  J )
y )  =/=  (/) )
7 n0 3639 . . . . . . 7  |-  ( ( x ( PHtpy `  J
) y )  =/=  (/) 
<->  E. f  f  e.  ( x ( PHtpy `  J ) y ) )
86, 7sylib 190 . . . . . 6  |-  ( x (  ~=ph  `  J ) y  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
95adantr 453 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  x  e.  ( II  Cn  J
) )
104adantr 453 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  y  e.  ( II  Cn  J
) )
11 eqid 2438 . . . . . . . 8  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  =  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )
12 simpr 449 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  f  e.  ( x ( PHtpy `  J ) y ) )
139, 10, 11, 12phtpycom 19015 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )  e.  ( y ( PHtpy `  J ) x ) )
14 ne0i 3636 . . . . . . 7  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  e.  ( y ( PHtpy `  J )
x )  ->  (
y ( PHtpy `  J
) x )  =/=  (/) )
1513, 14syl 16 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
168, 15exlimddv 1649 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
17 isphtpc 19021 . . . . 5  |-  ( y (  ~=ph  `  J ) x  <->  ( y  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
x )  =/=  (/) ) )
184, 5, 16, 17syl3anbrc 1139 . . . 4  |-  ( x (  ~=ph  `  J ) y  ->  y (  ~=ph  `  J ) x )
1918adantl 454 . . 3  |-  ( (  T.  /\  x ( 
~=ph  `  J ) y )  ->  y (  ~=ph  `  J ) x )
205adantr 453 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x  e.  ( II  Cn  J
) )
21 simpr 449 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y
(  ~=ph  `  J )
z )
22 isphtpc 19021 . . . . . . 7  |-  ( y (  ~=ph  `  J ) z  <->  ( y  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
z )  =/=  (/) ) )
2321, 22sylib 190 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y  e.  ( II 
Cn  J )  /\  z  e.  ( II  Cn  J )  /\  (
y ( PHtpy `  J
) z )  =/=  (/) ) )
2423simp2d 971 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  z  e.  ( II  Cn  J
) )
256adantr 453 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) y )  =/=  (/) )
2625, 7sylib 190 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
2723simp3d 972 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y ( PHtpy `  J
) z )  =/=  (/) )
28 n0 3639 . . . . . . . 8  |-  ( ( y ( PHtpy `  J
) z )  =/=  (/) 
<->  E. g  g  e.  ( y ( PHtpy `  J ) z ) )
2927, 28sylib 190 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. g 
g  e.  ( y ( PHtpy `  J )
z ) )
30 eeanv 1938 . . . . . . 7  |-  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  <->  ( E. f 
f  e.  ( x ( PHtpy `  J )
y )  /\  E. g  g  e.  (
y ( PHtpy `  J
) z ) ) )
3126, 29, 30sylanbrc 647 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f E. g ( f  e.  ( x ( PHtpy `  J ) y )  /\  g  e.  ( y ( PHtpy `  J
) z ) ) )
32 eqid 2438 . . . . . . . . . 10  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )  =  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )
3320adantr 453 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  x  e.  ( II  Cn  J ) )
3423simp1d 970 . . . . . . . . . . 11  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y  e.  ( II  Cn  J
) )
3534adantr 453 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  y  e.  ( II  Cn  J ) )
3624adantr 453 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  z  e.  ( II  Cn  J ) )
37 simprl 734 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  f  e.  ( x ( PHtpy `  J
) y ) )
38 simprr 735 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  g  e.  ( y ( PHtpy `  J
) z ) )
3932, 33, 35, 36, 37, 38phtpycc 19018 . . . . . . . . 9  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  if ( v  <_  ( 1  / 
2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x (
PHtpy `  J ) z ) )
40 ne0i 3636 . . . . . . . . 9  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  (
1  /  2 ) ,  ( u f ( 2  x.  v
) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x ( PHtpy `  J
) z )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) )
4139, 40syl 16 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( x (
PHtpy `  J ) z )  =/=  (/) )
4241ex 425 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) ) )
4342exlimdvv 1648 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  ->  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4431, 43mpd 15 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) z )  =/=  (/) )
45 isphtpc 19021 . . . . 5  |-  ( x (  ~=ph  `  J ) z  <->  ( x  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4620, 24, 44, 45syl3anbrc 1139 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x
(  ~=ph  `  J )
z )
4746adantl 454 . . 3  |-  ( (  T.  /\  ( x (  ~=ph  `  J ) y  /\  y ( 
~=ph  `  J ) z ) )  ->  x
(  ~=ph  `  J )
z )
48 eqid 2438 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `
 y ) )  =  ( y  e.  ( 0 [,] 1
) ,  z  e.  ( 0 [,] 1
)  |->  ( x `  y ) )
49 id 21 . . . . . . . . . 10  |-  ( x  e.  ( II  Cn  J )  ->  x  e.  ( II  Cn  J
) )
5048, 49phtpyid 19016 . . . . . . . . 9  |-  ( x  e.  ( II  Cn  J )  ->  (
y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x ) )
51 ne0i 3636 . . . . . . . . 9  |-  ( ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
5250, 51syl 16 . . . . . . . 8  |-  ( x  e.  ( II  Cn  J )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
5352ancli 536 . . . . . . 7  |-  ( x  e.  ( II  Cn  J )  ->  (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) ) )
5453pm4.71ri 616 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
55 df-3an 939 . . . . . 6  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
56 3ancomb 946 . . . . . 6  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5754, 55, 563bitr2i 266 . . . . 5  |-  ( x  e.  ( II  Cn  J )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
58 isphtpc 19021 . . . . 5  |-  ( x (  ~=ph  `  J ) x  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5957, 58bitr4i 245 . . . 4  |-  ( x  e.  ( II  Cn  J )  <->  x (  ~=ph  `  J ) x )
6059a1i 11 . . 3  |-  (  T. 
->  ( x  e.  ( II  Cn  J )  <-> 
x (  ~=ph  `  J
) x ) )
612, 19, 47, 60iserd 6933 . 2  |-  (  T. 
->  (  ~=ph  `  J
)  Er  ( II 
Cn  J ) )
6261trud 1333 1  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    T. wtru 1326   E.wex 1551    e. wcel 1726    =/= wne 2601   (/)c0 3630   ifcif 3741   class class class wbr 4214   Rel wrel 4885   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085    Er wer 6904   0cc0 8992   1c1 8993    x. cmul 8997    <_ cle 9123    - cmin 9293    / cdiv 9679   2c2 10051   [,]cicc 10921    Cn ccn 17290   IIcii 18907   PHtpycphtpy 18995    ~=ph cphtpc 18996
This theorem is referenced by:  pcophtb  19056  pi1buni  19067  pi1addf  19074  pi1addval  19075  pi1grplem  19076  pi1inv  19079  pi1xfrf  19080  pi1xfr  19082  pi1xfrcnvlem  19083  pi1cof  19086  sconpi1  24928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-icc 10925  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-cn 17293  df-cnp 17294  df-tx 17596  df-hmeo 17789  df-xms 18352  df-ms 18353  df-tms 18354  df-ii 18909  df-htpy 18997  df-phtpy 18998  df-phtpc 19019
  Copyright terms: Public domain W3C validator