HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem1 Unicode version

Theorem pjhthlem1 21962
Description: Lemma for pjhth 21964. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1  |-  H  e. 
CH
pjhth.2  |-  ( ph  ->  A  e.  ~H )
pjhth.3  |-  ( ph  ->  B  e.  H )
pjhth.4  |-  ( ph  ->  C  e.  H )
pjhth.5  |-  ( ph  ->  A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) ) )
pjhth.6  |-  T  =  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )
Assertion
Ref Expression
pjhthlem1  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  =  0 )
Distinct variable groups:    x, A    x, B    x, C    x, H    x, T
Allowed substitution hint:    ph( x)

Proof of Theorem pjhthlem1
StepHypRef Expression
1 pjhth.2 . . . 4  |-  ( ph  ->  A  e.  ~H )
2 pjhth.3 . . . . 5  |-  ( ph  ->  B  e.  H )
3 pjhth.1 . . . . . 6  |-  H  e. 
CH
43cheli 21804 . . . . 5  |-  ( B  e.  H  ->  B  e.  ~H )
52, 4syl 17 . . . 4  |-  ( ph  ->  B  e.  ~H )
6 hvsubcl 21589 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  e.  ~H )
71, 5, 6syl2anc 644 . . 3  |-  ( ph  ->  ( A  -h  B
)  e.  ~H )
8 pjhth.4 . . . 4  |-  ( ph  ->  C  e.  H )
93cheli 21804 . . . 4  |-  ( C  e.  H  ->  C  e.  ~H )
108, 9syl 17 . . 3  |-  ( ph  ->  C  e.  ~H )
11 hicl 21651 . . 3  |-  ( ( ( A  -h  B
)  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  B )  .ih  C
)  e.  CC )
127, 10, 11syl2anc 644 . 2  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  e.  CC )
1312abscld 11912 . . . 4  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  e.  RR )
1413recnd 8856 . . 3  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  e.  CC )
1513resqcld 11265 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  RR )
1615renegcld 9205 . . . . . 6  |-  ( ph  -> 
-u ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  e.  RR )
17 hiidrcl 21666 . . . . . . . 8  |-  ( C  e.  ~H  ->  ( C  .ih  C )  e.  RR )
1810, 17syl 17 . . . . . . 7  |-  ( ph  ->  ( C  .ih  C
)  e.  RR )
19 2re 9810 . . . . . . 7  |-  2  e.  RR
20 readdcl 8815 . . . . . . 7  |-  ( ( ( C  .ih  C
)  e.  RR  /\  2  e.  RR )  ->  ( ( C  .ih  C )  +  2 )  e.  RR )
2118, 19, 20sylancl 645 . . . . . 6  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  e.  RR )
22 0re 8833 . . . . . . . 8  |-  0  e.  RR
2322a1i 12 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
24 peano2re 8980 . . . . . . . 8  |-  ( ( C  .ih  C )  e.  RR  ->  (
( C  .ih  C
)  +  1 )  e.  RR )
2518, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  RR )
26 hiidge0 21669 . . . . . . . . 9  |-  ( C  e.  ~H  ->  0  <_  ( C  .ih  C
) )
2710, 26syl 17 . . . . . . . 8  |-  ( ph  ->  0  <_  ( C  .ih  C ) )
2818ltp1d 9682 . . . . . . . 8  |-  ( ph  ->  ( C  .ih  C
)  <  ( ( C  .ih  C )  +  1 ) )
2923, 18, 25, 27, 28lelttrd 8969 . . . . . . 7  |-  ( ph  ->  0  <  ( ( C  .ih  C )  +  1 ) )
3025ltp1d 9682 . . . . . . . 8  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  <  ( ( ( C  .ih  C )  +  1 )  +  1 ) )
3118recnd 8856 . . . . . . . . . 10  |-  ( ph  ->  ( C  .ih  C
)  e.  CC )
32 ax-1cn 8790 . . . . . . . . . . 11  |-  1  e.  CC
33 addass 8819 . . . . . . . . . . 11  |-  ( ( ( C  .ih  C
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( C  .ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
3432, 32, 33mp3an23 1271 . . . . . . . . . 10  |-  ( ( C  .ih  C )  e.  CC  ->  (
( ( C  .ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
3531, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
36 df-2 9799 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3736oveq2i 5830 . . . . . . . . 9  |-  ( ( C  .ih  C )  +  2 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) )
3835, 37syl6reqr 2335 . . . . . . . 8  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  =  ( ( ( C  .ih  C )  +  1 )  +  1 ) )
3930, 38breqtrrd 4050 . . . . . . 7  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  <  ( ( C 
.ih  C )  +  2 ) )
4023, 25, 21, 29, 39lttrd 8972 . . . . . 6  |-  ( ph  ->  0  <  ( ( C  .ih  C )  +  2 ) )
413chshii 21799 . . . . . . . . . . . . . . 15  |-  H  e.  SH
4241a1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  SH )
43 pjhth.6 . . . . . . . . . . . . . . . 16  |-  T  =  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )
4425recnd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  CC )
4518, 27ge0p1rpd 10411 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  RR+ )
4645rpne0d 10390 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  =/=  0 )
4712, 44, 46divcld 9531 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )  e.  CC )
4843, 47syl5eqel 2368 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  CC )
49 shmulcl 21789 . . . . . . . . . . . . . . 15  |-  ( ( H  e.  SH  /\  T  e.  CC  /\  C  e.  H )  ->  ( T  .h  C )  e.  H )
5042, 48, 8, 49syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  .h  C
)  e.  H )
51 shaddcl 21788 . . . . . . . . . . . . . 14  |-  ( ( H  e.  SH  /\  B  e.  H  /\  ( T  .h  C
)  e.  H )  ->  ( B  +h  ( T  .h  C
) )  e.  H
)
5242, 2, 50, 51syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  +h  ( T  .h  C )
)  e.  H )
53 pjhth.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) ) )
54 oveq2 5827 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  ( A  -h  x )  =  ( A  -h  ( B  +h  ( T  .h  C ) ) ) )
5554fveq2d 5489 . . . . . . . . . . . . . . 15  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  ( normh `  ( A  -h  x ) )  =  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
5655breq2d 4036 . . . . . . . . . . . . . 14  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  (
( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) )  <->  ( normh `  ( A  -h  B
) )  <_  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) ) )
5756rspcv 2881 . . . . . . . . . . . . 13  |-  ( ( B  +h  ( T  .h  C ) )  e.  H  ->  ( A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) )  -> 
( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) ) )
5852, 53, 57sylc 58 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
593cheli 21804 . . . . . . . . . . . . . . 15  |-  ( ( T  .h  C )  e.  H  ->  ( T  .h  C )  e.  ~H )
6050, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  .h  C
)  e.  ~H )
61 hvsubass 21615 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( T  .h  C )  e.  ~H )  ->  (
( A  -h  B
)  -h  ( T  .h  C ) )  =  ( A  -h  ( B  +h  ( T  .h  C )
) ) )
621, 5, 60, 61syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  =  ( A  -h  ( B  +h  ( T  .h  C
) ) ) )
6362fveq2d 5489 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  =  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
6458, 63breqtrrd 4050 . . . . . . . . . . 11  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )
65 normcl 21696 . . . . . . . . . . . . 13  |-  ( ( A  -h  B )  e.  ~H  ->  ( normh `  ( A  -h  B ) )  e.  RR )
667, 65syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  e.  RR )
67 hvsubcl 21589 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )
687, 60, 67syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )
69 normcl 21696 . . . . . . . . . . . . 13  |-  ( ( ( A  -h  B
)  -h  ( T  .h  C ) )  e.  ~H  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  e.  RR )
7068, 69syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  e.  RR )
71 normge0 21697 . . . . . . . . . . . . 13  |-  ( ( A  -h  B )  e.  ~H  ->  0  <_  ( normh `  ( A  -h  B ) ) )
727, 71syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( normh `  ( A  -h  B
) ) )
7323, 66, 70, 72, 64letrd 8968 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C )
) ) )
7466, 70, 72, 73le2sqd 11274 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) )  <_  ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  <->  ( ( normh `  ( A  -h  B
) ) ^ 2 )  <_  ( ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 ) ) )
7564, 74mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  <_ 
( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 ) )
7670resqcld 11265 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  e.  RR )
7766resqcld 11265 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  e.  RR )
7876, 77subge0d 9357 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  -  ( ( normh `  ( A  -h  B
) ) ^ 2 ) )  <->  ( ( normh `  ( A  -h  B ) ) ^
2 )  <_  (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 ) ) )
7975, 78mpbird 225 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  -  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
80 2z 10049 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
81 rpexpcl 11116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  .ih  C )  +  1 )  e.  RR+  /\  2  e.  ZZ )  ->  (
( ( C  .ih  C )  +  1 ) ^ 2 )  e.  RR+ )
8245, 80, 81sylancl 645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  RR+ )
8315, 82rerpdivcld 10412 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  e.  RR )
8483, 21remulcld 8858 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  e.  RR )
8584recnd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  e.  CC )
8685negcld 9139 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) )  e.  CC )
87 hicl 21651 . . . . . . . . . . . 12  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  e.  CC )
887, 7, 87syl2anc 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  e.  CC )
8986, 88pncand 9153 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) )  =  -u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
90 normsq 21705 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  -h  ( T  .h  C ) )  e.  ~H  ->  (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  =  ( ( ( A  -h  B )  -h  ( T  .h  C )
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )
9168, 90syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( ( ( A  -h  B )  -h  ( T  .h  C ) )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) ) )
92 his2sub 21663 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H  /\  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )  ->  ( ( ( A  -h  B )  -h  ( T  .h  C
) )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  -  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ) )
937, 60, 68, 92syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -h  B )  -h  ( T  .h  C
) )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  -  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ) )
94 his2sub2 21664 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) ) )
957, 7, 60, 94syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  -h  B )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) ) )
9695oveq1d 5834 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) )
97 hicl 21651 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  CC )
987, 60, 97syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  CC )
99 his2sub2 21664 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( T  .h  C
)  .ih  ( A  -h  B ) )  -  ( ( T  .h  C )  .ih  ( T  .h  C )
) ) )
10060, 7, 60, 99syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( T  .h  C
)  .ih  ( A  -h  B ) )  -  ( ( T  .h  C )  .ih  ( T  .h  C )
) ) )
101 hicl 21651 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  e.  CC )
10260, 7, 101syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  e.  CC )
103 hicl 21651 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  e.  CC )
10460, 60, 103syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  e.  CC )
105102, 104subcld 9152 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( T  .h  C )  .ih  ( A  -h  B
) )  -  (
( T  .h  C
)  .ih  ( T  .h  C ) ) )  e.  CC )
106100, 105eqeltrd 2358 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  e.  CC )
10788, 98, 106subsub4d 9183 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) ) )
10883recnd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  e.  CC )
10932a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  CC )
110108, 44, 109adddid 8854 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  +  1 ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  +  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) ) )
11138oveq2d 5835 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( ( C 
.ih  C )  +  1 )  +  1 ) ) )
112 his5 21657 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( T  e.  CC  /\  ( A  -h  B
)  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( * `  T )  x.  ( ( A  -h  B )  .ih  C ) ) )
11348, 7, 10, 112syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( * `  T )  x.  ( ( A  -h  B )  .ih  C ) ) )
11448cjcld 11675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  T
)  e.  CC )
115114, 12mulcomd 8851 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( * `  T )  x.  (
( A  -h  B
)  .ih  C )
)  =  ( ( ( A  -h  B
)  .ih  C )  x.  ( * `  T
) ) )
11612cjcld 11675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  (
( A  -h  B
)  .ih  C )
)  e.  CC )
11712, 116, 44, 46divassd 9566 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( ( A  -h  B ) 
.ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) )  /  (
( C  .ih  C
)  +  1 ) )  =  ( ( ( A  -h  B
)  .ih  C )  x.  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ) )
11812absvalsqd 11918 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  ( ( ( A  -h  B ) 
.ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) ) )
119118oveq1d 5834 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( ( A  -h  B
)  .ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) )  /  (
( C  .ih  C
)  +  1 ) ) )
12043fveq2i 5488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( * `
 T )  =  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )
12112, 44, 46cjdivd 11702 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( * `  ( ( C  .ih  C )  +  1 ) ) ) )
12225cjred 11705 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( * `  (
( C  .ih  C
)  +  1 ) )  =  ( ( C  .ih  C )  +  1 ) )
123122oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
* `  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `
 ( ( A  -h  B )  .ih  C ) )  /  (
( C  .ih  C
)  +  1 ) ) )
124121, 123eqtrd 2316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
125120, 124syl5eq 2328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  T
)  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
126125oveq2d 5835 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  x.  ( * `
 T ) )  =  ( ( ( A  -h  B ) 
.ih  C )  x.  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ) )
127117, 119, 1263eqtr4rd 2327 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  x.  ( * `
 T ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( C  .ih  C )  +  1 ) ) )
128113, 115, 1273eqtrd 2320 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( C 
.ih  C )  +  1 ) ) )
12915recnd 8856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  CC )
130129, 44mulcomd 8851 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( C  .ih  C )  +  1 )  x.  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) )
13144sqvald 11236 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  =  ( ( ( C  .ih  C
)  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) )
132130, 131oveq12d 5837 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( C  .ih  C
)  +  1 )  x.  ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 ) )  /  (
( ( C  .ih  C )  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) ) )
133129, 44, 44, 46, 46divcan5d 9557 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( C  .ih  C )  +  1 )  x.  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) )  /  ( ( ( C  .ih  C
)  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( C  .ih  C )  +  1 ) ) )
134132, 133eqtr2d 2317 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  ( ( C 
.ih  C )  +  1 ) )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
13525resqcld 11265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  RR )
136135recnd 8856 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  CC )
13782rpne0d 10390 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  =/=  0 )
138129, 44, 136, 137div23d 9568 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
139128, 134, 1383eqtrd 2320 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
14083, 25remulcld 8858 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  1 ) )  e.  RR )
141139, 140eqeltrd 2358 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  RR )
142 hire 21665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  e.  RR  <->  ( ( A  -h  B
)  .ih  ( T  .h  C ) )  =  ( ( T  .h  C )  .ih  ( A  -h  B ) ) ) )
1437, 60, 142syl2anc 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  e.  RR  <->  ( ( A  -h  B
)  .ih  ( T  .h  C ) )  =  ( ( T  .h  C )  .ih  ( A  -h  B ) ) ) )
144141, 143mpbid 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( T  .h  C ) 
.ih  ( A  -h  B ) ) )
145144, 139eqtr3d 2318 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
146 his35 21659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T  e.  CC  /\  T  e.  CC )  /\  ( C  e. 
~H  /\  C  e.  ~H ) )  ->  (
( T  .h  C
)  .ih  ( T  .h  C ) )  =  ( ( T  x.  ( * `  T
) )  x.  ( C  .ih  C ) ) )
14748, 48, 10, 10, 146syl22anc 1185 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  =  ( ( T  x.  ( * `
 T ) )  x.  ( C  .ih  C ) ) )
14843fveq2i 5488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  T )  =  ( abs `  ( ( ( A  -h  B
)  .ih  C )  /  ( ( C 
.ih  C )  +  1 ) ) )
14912, 44, 46absdivd 11931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( abs `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( abs `  (
( C  .ih  C
)  +  1 ) ) ) )
15045rpge0d 10389 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  0  <_  ( ( C  .ih  C )  +  1 ) )
15125, 150absidd 11899 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( abs `  (
( C  .ih  C
)  +  1 ) )  =  ( ( C  .ih  C )  +  1 ) )
152151oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
)  /  ( abs `  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  (
( A  -h  B
)  .ih  C )
)  /  ( ( C  .ih  C )  +  1 ) ) )
153149, 152eqtrd 2316 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( abs `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
154148, 153syl5eq 2328 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( abs `  T
)  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
155154oveq1d 5834 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) ^
2 ) )
15648absvalsqd 11918 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( T  x.  ( * `  T
) ) )
15714, 44, 46sqdivd 11252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
158155, 156, 1573eqtr3d 2324 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( T  x.  (
* `  T )
)  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) ) )
159158oveq1d 5834 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  x.  ( * `  T
) )  x.  ( C  .ih  C ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) )
160147, 159eqtrd 2316 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) )
161145, 160oveq12d 5837 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( T  .h  C )  .ih  ( A  -h  B
) )  -  (
( T  .h  C
)  .ih  ( T  .h  C ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) ) )
162 pncan2 9053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .ih  C
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( C 
.ih  C )  +  1 )  -  ( C  .ih  C ) )  =  1 )
16331, 32, 162sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 )  -  ( C  .ih  C ) )  =  1 )
164163oveq2d 5835 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  -  ( C  .ih  C ) ) )  =  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  1 ) )
165108, 44, 31subdid 9230 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  -  ( C  .ih  C ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) ) )
166164, 165eqtr3d 2318 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  1 )  =  ( ( ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  1 ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  ( C  .ih  C ) ) ) )
167161, 100, 1663eqtr4d 2326 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) )
168139, 167oveq12d 5837 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  +  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) ) )
169110, 111, 1683eqtr4rd 2327 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
170169oveq2d 5835 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  -  (
( ( A  -h  B )  .ih  ( T  .h  C )
)  +  ( ( T  .h  C ) 
.ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17196, 107, 1703eqtrd 2320 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17291, 93, 1713eqtrd 2320 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17388, 85negsubd 9158 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  -u ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) )  =  ( ( ( A  -h  B )  .ih  ( A  -h  B ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) ) )
17488, 86addcomd 9009 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  -u ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) )  =  (
-u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) )  +  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) ) )
175172, 173, 1743eqtr2d 2322 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) ) )
176 normsq 21705 . . . . . . . . . . . 12  |-  ( ( A  -h  B )  e.  ~H  ->  (
( normh `  ( A  -h  B ) ) ^
2 )  =  ( ( A  -h  B
)  .ih  ( A  -h  B ) ) )
1777, 176syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  =  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )
178175, 177oveq12d 5837 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( normh `  ( ( A  -h  B )  -h  ( T  .h  C )
) ) ^ 2 )  -  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  =  ( ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) ) )
17921renegcld 9205 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( C 
.ih  C )  +  2 )  e.  RR )
180179recnd 8856 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( ( C 
.ih  C )  +  2 )  e.  CC )
181129, 180, 136, 137div23d 9568 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  -u ( ( C  .ih  C )  +  2 ) ) )
18221recnd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  e.  CC )
183108, 182mulneg2d 9228 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  -u (
( C  .ih  C
)  +  2 ) )  =  -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) ) )
184181, 183eqtrd 2316 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  -u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
18589, 178, 1843eqtr4rd 2327 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( (
normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  -  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
18679, 185breqtrrd 4050 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
18715, 179remulcld 8858 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  -u (
( C  .ih  C
)  +  2 ) )  e.  RR )
188187, 82ge0divd 10419 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) )  <->  0  <_  ( ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  -u (
( C  .ih  C
)  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) ) ) )
189186, 188mpbird 225 . . . . . . 7  |-  ( ph  ->  0  <_  ( (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) ) )
190 mulneg12 9213 . . . . . . . 8  |-  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  CC  /\  (
( C  .ih  C
)  +  2 )  e.  CC )  -> 
( -u ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) ) )
191129, 182, 190syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) )  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) ) )
192189, 191breqtrrd 4050 . . . . . 6  |-  ( ph  ->  0  <_  ( -u (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  ( ( C 
.ih  C )  +  2 ) ) )
193 prodge02 9599 . . . . . 6  |-  ( ( ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  e.  RR  /\  ( ( C  .ih  C )  +  2 )  e.  RR )  /\  (
0  <  ( ( C  .ih  C )  +  2 )  /\  0  <_  ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) ) ) )  -> 
0  <_  -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 ) )
19416, 21, 40, 192, 193syl22anc 1185 . . . . 5  |-  ( ph  ->  0  <_  -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 ) )
19515le0neg1d 9339 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  <_  0  <->  0  <_  -u ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) )
196194, 195mpbird 225 . . . 4  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0 )
19713sqge0d 11266 . . . 4  |-  ( ph  ->  0  <_  ( ( abs `  ( ( A  -h  B )  .ih  C ) ) ^ 2 ) )
198 letri3 8902 . . . . 5  |-  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  0  <->  ( (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0  /\  0  <_  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) ) )
19915, 22, 198sylancl 645 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  =  0  <->  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0  /\  0  <_  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) ) )
200196, 197, 199mpbir2and 890 . . 3  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  0 )
20114, 200sqeq0d 11238 . 2  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  =  0 )
20212, 201abs00d 11922 1  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    < clt 8862    <_ cle 8863    - cmin 9032   -ucneg 9033    / cdiv 9418   2c2 9790   ZZcz 10019   RR+crp 10349   ^cexp 11098   *ccj 11575   abscabs 11713   ~Hchil 21491    +h cva 21492    .h csm 21493    .ih csp 21494   normhcno 21495    -h cmv 21497   SHcsh 21500   CHcch 21501
This theorem is referenced by:  pjhthlem2  21963
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-hilex 21571  ax-hfvadd 21572  ax-hvass 21574  ax-hv0cl 21575  ax-hfvmul 21577  ax-hvdistr1 21580  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his2 21654  ax-his3 21655  ax-his4 21656
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-hnorm 21540  df-hvsub 21543  df-sh 21778  df-ch 21793
  Copyright terms: Public domain W3C validator