HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem1 Unicode version

Theorem pjhthlem1 21800
Description: Lemma for pjhth 21802. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1  |-  H  e. 
CH
pjhth.2  |-  ( ph  ->  A  e.  ~H )
pjhth.3  |-  ( ph  ->  B  e.  H )
pjhth.4  |-  ( ph  ->  C  e.  H )
pjhth.5  |-  ( ph  ->  A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) ) )
pjhth.6  |-  T  =  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )
Assertion
Ref Expression
pjhthlem1  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  =  0 )
Distinct variable groups:    x, A    x, B    x, C    x, H    x, T
Allowed substitution hint:    ph( x)

Proof of Theorem pjhthlem1
StepHypRef Expression
1 pjhth.2 . . . 4  |-  ( ph  ->  A  e.  ~H )
2 pjhth.3 . . . . 5  |-  ( ph  ->  B  e.  H )
3 pjhth.1 . . . . . 6  |-  H  e. 
CH
43cheli 21642 . . . . 5  |-  ( B  e.  H  ->  B  e.  ~H )
52, 4syl 17 . . . 4  |-  ( ph  ->  B  e.  ~H )
6 hvsubcl 21427 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  -h  B
)  e.  ~H )
71, 5, 6syl2anc 645 . . 3  |-  ( ph  ->  ( A  -h  B
)  e.  ~H )
8 pjhth.4 . . . 4  |-  ( ph  ->  C  e.  H )
93cheli 21642 . . . 4  |-  ( C  e.  H  ->  C  e.  ~H )
108, 9syl 17 . . 3  |-  ( ph  ->  C  e.  ~H )
11 hicl 21489 . . 3  |-  ( ( ( A  -h  B
)  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  B )  .ih  C
)  e.  CC )
127, 10, 11syl2anc 645 . 2  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  e.  CC )
1312abscld 11795 . . . 4  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  e.  RR )
1413recnd 8741 . . 3  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  e.  CC )
1513resqcld 11149 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  RR )
1615renegcld 9090 . . . . . 6  |-  ( ph  -> 
-u ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  e.  RR )
17 hiidrcl 21504 . . . . . . . 8  |-  ( C  e.  ~H  ->  ( C  .ih  C )  e.  RR )
1810, 17syl 17 . . . . . . 7  |-  ( ph  ->  ( C  .ih  C
)  e.  RR )
19 2re 9695 . . . . . . 7  |-  2  e.  RR
20 readdcl 8700 . . . . . . 7  |-  ( ( ( C  .ih  C
)  e.  RR  /\  2  e.  RR )  ->  ( ( C  .ih  C )  +  2 )  e.  RR )
2118, 19, 20sylancl 646 . . . . . 6  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  e.  RR )
22 0re 8718 . . . . . . . 8  |-  0  e.  RR
2322a1i 12 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
24 peano2re 8865 . . . . . . . 8  |-  ( ( C  .ih  C )  e.  RR  ->  (
( C  .ih  C
)  +  1 )  e.  RR )
2518, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  RR )
26 hiidge0 21507 . . . . . . . . 9  |-  ( C  e.  ~H  ->  0  <_  ( C  .ih  C
) )
2710, 26syl 17 . . . . . . . 8  |-  ( ph  ->  0  <_  ( C  .ih  C ) )
2818ltp1d 9567 . . . . . . . 8  |-  ( ph  ->  ( C  .ih  C
)  <  ( ( C  .ih  C )  +  1 ) )
2923, 18, 25, 27, 28lelttrd 8854 . . . . . . 7  |-  ( ph  ->  0  <  ( ( C  .ih  C )  +  1 ) )
3025ltp1d 9567 . . . . . . . 8  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  <  ( ( ( C  .ih  C )  +  1 )  +  1 ) )
3118recnd 8741 . . . . . . . . . 10  |-  ( ph  ->  ( C  .ih  C
)  e.  CC )
32 ax-1cn 8675 . . . . . . . . . . 11  |-  1  e.  CC
33 addass 8704 . . . . . . . . . . 11  |-  ( ( ( C  .ih  C
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( C  .ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
3432, 32, 33mp3an23 1274 . . . . . . . . . 10  |-  ( ( C  .ih  C )  e.  CC  ->  (
( ( C  .ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
3531, 34syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 )  +  1 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) ) )
36 df-2 9684 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3736oveq2i 5721 . . . . . . . . 9  |-  ( ( C  .ih  C )  +  2 )  =  ( ( C  .ih  C )  +  ( 1  +  1 ) )
3835, 37syl6reqr 2304 . . . . . . . 8  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  =  ( ( ( C  .ih  C )  +  1 )  +  1 ) )
3930, 38breqtrrd 3946 . . . . . . 7  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  <  ( ( C 
.ih  C )  +  2 ) )
4023, 25, 21, 29, 39lttrd 8857 . . . . . 6  |-  ( ph  ->  0  <  ( ( C  .ih  C )  +  2 ) )
413chshii 21637 . . . . . . . . . . . . . . 15  |-  H  e.  SH
4241a1i 12 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  SH )
43 pjhth.6 . . . . . . . . . . . . . . . 16  |-  T  =  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )
4425recnd 8741 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  CC )
4518, 27ge0p1rpd 10295 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  e.  RR+ )
4645rpne0d 10274 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( C  .ih  C )  +  1 )  =/=  0 )
4712, 44, 46divcld 9416 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  /  ( ( C  .ih  C )  +  1 ) )  e.  CC )
4843, 47syl5eqel 2337 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  CC )
49 shmulcl 21627 . . . . . . . . . . . . . . 15  |-  ( ( H  e.  SH  /\  T  e.  CC  /\  C  e.  H )  ->  ( T  .h  C )  e.  H )
5042, 48, 8, 49syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  .h  C
)  e.  H )
51 shaddcl 21626 . . . . . . . . . . . . . 14  |-  ( ( H  e.  SH  /\  B  e.  H  /\  ( T  .h  C
)  e.  H )  ->  ( B  +h  ( T  .h  C
) )  e.  H
)
5242, 2, 50, 51syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B  +h  ( T  .h  C )
)  e.  H )
53 pjhth.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) ) )
54 oveq2 5718 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  ( A  -h  x )  =  ( A  -h  ( B  +h  ( T  .h  C ) ) ) )
5554fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  ( normh `  ( A  -h  x ) )  =  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
5655breq2d 3932 . . . . . . . . . . . . . 14  |-  ( x  =  ( B  +h  ( T  .h  C
) )  ->  (
( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) )  <->  ( normh `  ( A  -h  B
) )  <_  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) ) )
5756rcla4v 2817 . . . . . . . . . . . . 13  |-  ( ( B  +h  ( T  .h  C ) )  e.  H  ->  ( A. x  e.  H  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  x ) )  -> 
( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) ) )
5852, 53, 57sylc 58 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
593cheli 21642 . . . . . . . . . . . . . . 15  |-  ( ( T  .h  C )  e.  H  ->  ( T  .h  C )  e.  ~H )
6050, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  .h  C
)  e.  ~H )
61 hvsubass 21453 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  ( T  .h  C )  e.  ~H )  ->  (
( A  -h  B
)  -h  ( T  .h  C ) )  =  ( A  -h  ( B  +h  ( T  .h  C )
) ) )
621, 5, 60, 61syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  =  ( A  -h  ( B  +h  ( T  .h  C
) ) ) )
6362fveq2d 5381 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  =  ( normh `  ( A  -h  ( B  +h  ( T  .h  C )
) ) ) )
6458, 63breqtrrd 3946 . . . . . . . . . . 11  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  <_ 
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )
65 normcl 21534 . . . . . . . . . . . . 13  |-  ( ( A  -h  B )  e.  ~H  ->  ( normh `  ( A  -h  B ) )  e.  RR )
667, 65syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( A  -h  B ) )  e.  RR )
67 hvsubcl 21427 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )
687, 60, 67syl2anc 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )
69 normcl 21534 . . . . . . . . . . . . 13  |-  ( ( ( A  -h  B
)  -h  ( T  .h  C ) )  e.  ~H  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  e.  RR )
7068, 69syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  e.  RR )
71 normge0 21535 . . . . . . . . . . . . 13  |-  ( ( A  -h  B )  e.  ~H  ->  0  <_  ( normh `  ( A  -h  B ) ) )
727, 71syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( normh `  ( A  -h  B
) ) )
7323, 66, 70, 72, 64letrd 8853 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( normh `  ( ( A  -h  B )  -h  ( T  .h  C )
) ) )
7466, 70, 72, 73le2sqd 11158 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) )  <_  ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  <->  ( ( normh `  ( A  -h  B
) ) ^ 2 )  <_  ( ( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 ) ) )
7564, 74mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  <_ 
( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 ) )
7670resqcld 11149 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  e.  RR )
7766resqcld 11149 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  e.  RR )
7876, 77subge0d 9242 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  -  ( ( normh `  ( A  -h  B
) ) ^ 2 ) )  <->  ( ( normh `  ( A  -h  B ) ) ^
2 )  <_  (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 ) ) )
7975, 78mpbird 225 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  -  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
80 2z 9933 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
81 rpexpcl 11000 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  .ih  C )  +  1 )  e.  RR+  /\  2  e.  ZZ )  ->  (
( ( C  .ih  C )  +  1 ) ^ 2 )  e.  RR+ )
8245, 80, 81sylancl 646 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  RR+ )
8315, 82rerpdivcld 10296 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  e.  RR )
8483, 21remulcld 8743 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  e.  RR )
8584recnd 8741 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  e.  CC )
8685negcld 9024 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) )  e.  CC )
87 hicl 21489 . . . . . . . . . . . 12  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  e.  CC )
887, 7, 87syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( A  -h  B ) )  e.  CC )
8986, 88pncand 9038 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) )  =  -u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
90 normsq 21543 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  -h  ( T  .h  C ) )  e.  ~H  ->  (
( normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  =  ( ( ( A  -h  B )  -h  ( T  .h  C )
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )
9168, 90syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( ( ( A  -h  B )  -h  ( T  .h  C ) )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) ) )
92 his2sub 21501 . . . . . . . . . . . . . 14  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H  /\  ( ( A  -h  B )  -h  ( T  .h  C )
)  e.  ~H )  ->  ( ( ( A  -h  B )  -h  ( T  .h  C
) )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  -  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ) )
937, 60, 68, 92syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -h  B )  -h  ( T  .h  C
) )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) )  -  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ) )
94 his2sub2 21502 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) ) )
957, 7, 60, 94syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  -h  B )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) ) )
9695oveq1d 5725 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) )
97 hicl 21489 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  CC )
987, 60, 97syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  CC )
99 his2sub2 21502 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( T  .h  C
)  .ih  ( A  -h  B ) )  -  ( ( T  .h  C )  .ih  ( T  .h  C )
) ) )
10060, 7, 60, 99syl3anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( T  .h  C
)  .ih  ( A  -h  B ) )  -  ( ( T  .h  C )  .ih  ( T  .h  C )
) ) )
101 hicl 21489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( A  -h  B
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  e.  CC )
10260, 7, 101syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  e.  CC )
103 hicl 21489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T  .h  C
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  e.  CC )
10460, 60, 103syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  e.  CC )
105102, 104subcld 9037 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( T  .h  C )  .ih  ( A  -h  B
) )  -  (
( T  .h  C
)  .ih  ( T  .h  C ) ) )  e.  CC )
106100, 105eqeltrd 2327 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  e.  CC )
10788, 98, 106subsub4d 9068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( A  -h  B )  .ih  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) ) )
10883recnd 8741 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  e.  CC )
10932a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  CC )
110108, 44, 109adddid 8739 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  +  1 ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  +  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) ) )
11138oveq2d 5726 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( ( C 
.ih  C )  +  1 )  +  1 ) ) )
112 his5 21495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( T  e.  CC  /\  ( A  -h  B
)  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( * `  T )  x.  ( ( A  -h  B )  .ih  C ) ) )
11348, 7, 10, 112syl3anc 1187 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( * `  T )  x.  ( ( A  -h  B )  .ih  C ) ) )
11448cjcld 11558 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  T
)  e.  CC )
115114, 12mulcomd 8736 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( * `  T )  x.  (
( A  -h  B
)  .ih  C )
)  =  ( ( ( A  -h  B
)  .ih  C )  x.  ( * `  T
) ) )
11612cjcld 11558 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  (
( A  -h  B
)  .ih  C )
)  e.  CC )
11712, 116, 44, 46divassd 9451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( ( A  -h  B ) 
.ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) )  /  (
( C  .ih  C
)  +  1 ) )  =  ( ( ( A  -h  B
)  .ih  C )  x.  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ) )
11812absvalsqd 11801 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  ( ( ( A  -h  B ) 
.ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) ) )
119118oveq1d 5725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( ( A  -h  B
)  .ih  C )  x.  ( * `  (
( A  -h  B
)  .ih  C )
) )  /  (
( C  .ih  C
)  +  1 ) ) )
12043fveq2i 5380 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( * `
 T )  =  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )
12112, 44, 46cjdivd 11585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( * `  ( ( C  .ih  C )  +  1 ) ) ) )
12225cjred 11588 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( * `  (
( C  .ih  C
)  +  1 ) )  =  ( ( C  .ih  C )  +  1 ) )
123122oveq2d 5726 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
* `  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `
 ( ( A  -h  B )  .ih  C ) )  /  (
( C  .ih  C
)  +  1 ) ) )
124121, 123eqtrd 2285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( * `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
125120, 124syl5eq 2297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  T
)  =  ( ( * `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
126125oveq2d 5726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  x.  ( * `
 T ) )  =  ( ( ( A  -h  B ) 
.ih  C )  x.  ( ( * `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ) )
127117, 119, 1263eqtr4rd 2296 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  C )  x.  ( * `
 T ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( C  .ih  C )  +  1 ) ) )
128113, 115, 1273eqtrd 2289 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( C 
.ih  C )  +  1 ) ) )
12915recnd 8741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  CC )
130129, 44mulcomd 8736 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( C  .ih  C )  +  1 )  x.  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) )
13144sqvald 11120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  =  ( ( ( C  .ih  C
)  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) )
132130, 131oveq12d 5728 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( C  .ih  C
)  +  1 )  x.  ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 ) )  /  (
( ( C  .ih  C )  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) ) )
133129, 44, 44, 46, 46divcan5d 9442 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( C  .ih  C )  +  1 )  x.  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) )  /  ( ( ( C  .ih  C
)  +  1 )  x.  ( ( C 
.ih  C )  +  1 ) ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( C  .ih  C )  +  1 ) ) )
134132, 133eqtr2d 2286 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( C  .ih  C )  +  1 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  ( ( C 
.ih  C )  +  1 ) )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
13525resqcld 11149 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  RR )
136135recnd 8741 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  e.  CC )
13782rpne0d 10274 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 ) ^ 2 )  =/=  0 )
138129, 44, 136, 137div23d 9453 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  1 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
139128, 134, 1383eqtrd 2289 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
14083, 25remulcld 8743 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  1 ) )  e.  RR )
141139, 140eqeltrd 2327 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  e.  RR )
142 hire 21503 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  -h  B
)  e.  ~H  /\  ( T  .h  C
)  e.  ~H )  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  e.  RR  <->  ( ( A  -h  B
)  .ih  ( T  .h  C ) )  =  ( ( T  .h  C )  .ih  ( A  -h  B ) ) ) )
1437, 60, 142syl2anc 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  e.  RR  <->  ( ( A  -h  B
)  .ih  ( T  .h  C ) )  =  ( ( T  .h  C )  .ih  ( A  -h  B ) ) ) )
144141, 143mpbid 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( A  -h  B )  .ih  ( T  .h  C )
)  =  ( ( T  .h  C ) 
.ih  ( A  -h  B ) ) )
145144, 139eqtr3d 2287 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( A  -h  B ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) ) )
146 his35 21497 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T  e.  CC  /\  T  e.  CC )  /\  ( C  e. 
~H  /\  C  e.  ~H ) )  ->  (
( T  .h  C
)  .ih  ( T  .h  C ) )  =  ( ( T  x.  ( * `  T
) )  x.  ( C  .ih  C ) ) )
14748, 48, 10, 10, 146syl22anc 1188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  =  ( ( T  x.  ( * `
 T ) )  x.  ( C  .ih  C ) ) )
14843fveq2i 5380 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  T )  =  ( abs `  ( ( ( A  -h  B
)  .ih  C )  /  ( ( C 
.ih  C )  +  1 ) ) )
14912, 44, 46absdivd 11814 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( abs `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( abs `  (
( C  .ih  C
)  +  1 ) ) ) )
15045rpge0d 10273 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  0  <_  ( ( C  .ih  C )  +  1 ) )
15125, 150absidd 11782 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( abs `  (
( C  .ih  C
)  +  1 ) )  =  ( ( C  .ih  C )  +  1 ) )
152151oveq2d 5726 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
)  /  ( abs `  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  (
( A  -h  B
)  .ih  C )
)  /  ( ( C  .ih  C )  +  1 ) ) )
153149, 152eqtrd 2285 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( abs `  (
( ( A  -h  B )  .ih  C
)  /  ( ( C  .ih  C )  +  1 ) ) )  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
154148, 153syl5eq 2297 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( abs `  T
)  =  ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) )
155154oveq1d 5725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) )  /  ( ( C 
.ih  C )  +  1 ) ) ^
2 ) )
15648absvalsqd 11801 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( T  x.  ( * `  T
) ) )
15714, 44, 46sqdivd 11136 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) )  /  (
( C  .ih  C
)  +  1 ) ) ^ 2 )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
158155, 156, 1573eqtr3d 2293 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( T  x.  (
* `  T )
)  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) ) )
159158oveq1d 5725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  x.  ( * `  T
) )  x.  ( C  .ih  C ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) )
160147, 159eqtrd 2285 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T  .h  C )  .ih  ( T  .h  C )
)  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) )
161145, 160oveq12d 5728 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( T  .h  C )  .ih  ( A  -h  B
) )  -  (
( T  .h  C
)  .ih  ( T  .h  C ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) ) )
162 pncan2 8938 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .ih  C
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( C 
.ih  C )  +  1 )  -  ( C  .ih  C ) )  =  1 )
16331, 32, 162sylancl 646 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( C 
.ih  C )  +  1 )  -  ( C  .ih  C ) )  =  1 )
164163oveq2d 5726 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  -  ( C  .ih  C ) ) )  =  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  1 ) )
165108, 44, 31subdid 9115 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( ( C  .ih  C )  +  1 )  -  ( C  .ih  C ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( C  .ih  C
) ) ) )
166164, 165eqtr3d 2287 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  1 )  =  ( ( ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  1 ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  ( C  .ih  C ) ) ) )
167161, 100, 1663eqtr4d 2295 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T  .h  C )  .ih  (
( A  -h  B
)  -h  ( T  .h  C ) ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) )
168139, 167oveq12d 5728 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  1 ) )  +  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  1 ) ) )
169110, 111, 1683eqtr4rd 2296 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( T  .h  C
) )  +  ( ( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
170169oveq2d 5726 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  -  (
( ( A  -h  B )  .ih  ( T  .h  C )
)  +  ( ( T  .h  C ) 
.ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17196, 107, 1703eqtrd 2289 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( ( A  -h  B )  -h  ( T  .h  C )
) )  -  (
( T  .h  C
)  .ih  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17291, 93, 1713eqtrd 2289 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  -  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) ) )
17388, 85negsubd 9043 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  -u ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) )  =  ( ( ( A  -h  B )  .ih  ( A  -h  B ) )  -  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) ) )
17488, 86addcomd 8894 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  -u ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  (
( C  .ih  C
)  +  2 ) ) )  =  (
-u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) )  +  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) ) )
175172, 173, 1743eqtr2d 2291 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  (
( A  -h  B
)  -h  ( T  .h  C ) ) ) ^ 2 )  =  ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) ) )
176 normsq 21543 . . . . . . . . . . . 12  |-  ( ( A  -h  B )  e.  ~H  ->  (
( normh `  ( A  -h  B ) ) ^
2 )  =  ( ( A  -h  B
)  .ih  ( A  -h  B ) ) )
1777, 176syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( normh `  ( A  -h  B ) ) ^ 2 )  =  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )
178175, 177oveq12d 5728 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( normh `  ( ( A  -h  B )  -h  ( T  .h  C )
) ) ^ 2 )  -  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  =  ( ( -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) )  +  ( ( A  -h  B )  .ih  ( A  -h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( A  -h  B ) ) ) )
17921renegcld 9090 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( C 
.ih  C )  +  2 )  e.  RR )
180179recnd 8741 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( ( C 
.ih  C )  +  2 )  e.  CC )
181129, 180, 136, 137div23d 9453 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  -u ( ( C  .ih  C )  +  2 ) ) )
18221recnd 8741 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  .ih  C )  +  2 )  e.  CC )
183108, 182mulneg2d 9113 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) )  x.  -u (
( C  .ih  C
)  +  2 ) )  =  -u (
( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  x.  ( ( C 
.ih  C )  +  2 ) ) )
184181, 183eqtrd 2285 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  -u ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  /  ( ( ( C  .ih  C )  +  1 ) ^
2 ) )  x.  ( ( C  .ih  C )  +  2 ) ) )
18589, 178, 1843eqtr4rd 2296 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) )  =  ( ( (
normh `  ( ( A  -h  B )  -h  ( T  .h  C
) ) ) ^
2 )  -  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
18679, 185breqtrrd 3946 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) )  / 
( ( ( C 
.ih  C )  +  1 ) ^ 2 ) ) )
18715, 179remulcld 8743 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  -u (
( C  .ih  C
)  +  2 ) )  e.  RR )
188187, 82ge0divd 10303 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) )  <->  0  <_  ( ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  -u (
( C  .ih  C
)  +  2 ) )  /  ( ( ( C  .ih  C
)  +  1 ) ^ 2 ) ) ) )
189186, 188mpbird 225 . . . . . . 7  |-  ( ph  ->  0  <_  ( (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) ) )
190 mulneg12 9098 . . . . . . . 8  |-  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  CC  /\  (
( C  .ih  C
)  +  2 )  e.  CC )  -> 
( -u ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) )  =  ( ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  -u ( ( C  .ih  C )  +  2 ) ) )
191129, 182, 190syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) )  =  ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  -u ( ( C 
.ih  C )  +  2 ) ) )
192189, 191breqtrrd 3946 . . . . . 6  |-  ( ph  ->  0  <_  ( -u (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  x.  ( ( C 
.ih  C )  +  2 ) ) )
193 prodge02 9484 . . . . . 6  |-  ( ( ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  e.  RR  /\  ( ( C  .ih  C )  +  2 )  e.  RR )  /\  (
0  <  ( ( C  .ih  C )  +  2 )  /\  0  <_  ( -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 )  x.  ( ( C  .ih  C )  +  2 ) ) ) )  -> 
0  <_  -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 ) )
19416, 21, 40, 192, 193syl22anc 1188 . . . . 5  |-  ( ph  ->  0  <_  -u ( ( abs `  ( ( A  -h  B ) 
.ih  C ) ) ^ 2 ) )
19515le0neg1d 9224 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  <_  0  <->  0  <_  -u ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) )
196194, 195mpbird 225 . . . 4  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0 )
19713sqge0d 11150 . . . 4  |-  ( ph  ->  0  <_  ( ( abs `  ( ( A  -h  B )  .ih  C ) ) ^ 2 ) )
198 letri3 8787 . . . . 5  |-  ( ( ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  0  <->  ( (
( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0  /\  0  <_  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) ) )
19915, 22, 198sylancl 646 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( ( A  -h  B )  .ih  C
) ) ^ 2 )  =  0  <->  (
( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  <_  0  /\  0  <_  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 ) ) ) )
200196, 197, 199mpbir2and 893 . . 3  |-  ( ph  ->  ( ( abs `  (
( A  -h  B
)  .ih  C )
) ^ 2 )  =  0 )
20114, 200sqeq0d 11122 . 2  |-  ( ph  ->  ( abs `  (
( A  -h  B
)  .ih  C )
)  =  0 )
20212, 201abs00d 11805 1  |-  ( ph  ->  ( ( A  -h  B )  .ih  C
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917   -ucneg 8918    / cdiv 9303   2c2 9675   ZZcz 9903   RR+crp 10233   ^cexp 10982   *ccj 11458   abscabs 11596   ~Hchil 21329    +h cva 21330    .h csm 21331    .ih csp 21332   normhcno 21333    -h cmv 21335   SHcsh 21338   CHcch 21339
This theorem is referenced by:  pjhthlem2  21801
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hilex 21409  ax-hfvadd 21410  ax-hvass 21412  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvdistr1 21418  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-hnorm 21378  df-hvsub 21381  df-sh 21616  df-ch 21631
  Copyright terms: Public domain W3C validator