MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Structured version   Unicode version

Theorem pjth 19332
Description: Projection Theorem: Any Hilbert space vector  A can be decomposed uniquely into a member  x of a closed subspace  H and a member  y of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v  |-  V  =  ( Base `  W
)
pjth.s  |-  .(+)  =  (
LSSum `  W )
pjth.o  |-  O  =  ( ocv `  W
)
pjth.j  |-  J  =  ( TopOpen `  W )
pjth.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
pjth  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  =  V )

Proof of Theorem pjth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hlphl 19311 . . . . . 6  |-  ( W  e.  CHil  ->  W  e. 
PreHil )
213ad2ant1 978 . . . . 5  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  W  e.  PreHil )
3 phllmod 16853 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
42, 3syl 16 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  W  e.  LMod )
5 simp2 958 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  U  e.  L )
6 pjth.v . . . . . . 7  |-  V  =  ( Base `  W
)
7 pjth.l . . . . . . 7  |-  L  =  ( LSubSp `  W )
86, 7lssss 16005 . . . . . 6  |-  ( U  e.  L  ->  U  C_  V )
983ad2ant2 979 . . . . 5  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  V )
10 pjth.o . . . . . 6  |-  O  =  ( ocv `  W
)
116, 10, 7ocvlss 16891 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  C_  V )  ->  ( O `  U )  e.  L )
122, 9, 11syl2anc 643 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( O `  U )  e.  L )
13 pjth.s . . . . 5  |-  .(+)  =  (
LSSum `  W )
147, 13lsmcl 16147 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  ( O `  U )  e.  L )  ->  ( U  .(+)  ( O `  U ) )  e.  L )
154, 5, 12, 14syl3anc 1184 . . 3  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  e.  L )
166, 7lssss 16005 . . 3  |-  ( ( U  .(+)  ( O `  U ) )  e.  L  ->  ( U  .(+) 
( O `  U
) )  C_  V
)
1715, 16syl 16 . 2  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  C_  V )
18 eqid 2435 . . . . 5  |-  ( norm `  W )  =  (
norm `  W )
19 eqid 2435 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
20 eqid 2435 . . . . 5  |-  ( -g `  W )  =  (
-g `  W )
21 eqid 2435 . . . . 5  |-  ( .i
`  W )  =  ( .i `  W
)
22 simpl1 960 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  W  e.  CHil )
23 simpl2 961 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  U  e.  L )
24 simpr 448 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  x  e.  V )
25 pjth.j . . . . 5  |-  J  =  ( TopOpen `  W )
26 simpl3 962 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  U  e.  ( Clsd `  J ) )
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 19331 . . . 4  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  x  e.  ( U 
.(+)  ( O `  U ) ) )
2827ex 424 . . 3  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  (
x  e.  V  ->  x  e.  ( U  .(+) 
( O `  U
) ) ) )
2928ssrdv 3346 . 2  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  V  C_  ( U  .(+)  ( O `
 U ) ) )
3017, 29eqssd 3357 1  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3312   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   .icip 13526   TopOpenctopn 13641   -gcsg 14680   LSSumclsm 15260   LModclmod 15942   LSubSpclss 16000   PreHilcphl 16847   ocvcocv 16879   Clsdccld 17072   normcnm 18616   CHilchl 19279
This theorem is referenced by:  pjth2  19333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cntz 15108  df-lsm 15262  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-rnghom 15811  df-drng 15829  df-subrg 15858  df-staf 15925  df-srng 15926  df-lmod 15944  df-lss 16001  df-lmhm 16090  df-lvec 16167  df-sra 16236  df-rgmod 16237  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-phl 16849  df-ocv 16882  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-flim 17963  df-fcls 17965  df-xms 18342  df-ms 18343  df-tms 18344  df-nm 18622  df-ngp 18623  df-nlm 18626  df-cncf 18900  df-clm 19080  df-cph 19123  df-cfil 19200  df-cmet 19202  df-cms 19280  df-bn 19281  df-hl 19282
  Copyright terms: Public domain W3C validator