MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Unicode version

Theorem pjthlem1 18795
Description: Lemma for pjth 18797. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.)
Hypotheses
Ref Expression
pjthlem.v  |-  V  =  ( Base `  W
)
pjthlem.n  |-  N  =  ( norm `  W
)
pjthlem.p  |-  .+  =  ( +g  `  W )
pjthlem.m  |-  .-  =  ( -g `  W )
pjthlem.h  |-  .,  =  ( .i `  W )
pjthlem.l  |-  L  =  ( LSubSp `  W )
pjthlem.1  |-  ( ph  ->  W  e.  CHil )
pjthlem.2  |-  ( ph  ->  U  e.  L )
pjthlem.4  |-  ( ph  ->  A  e.  V )
pjthlem.5  |-  ( ph  ->  B  e.  U )
pjthlem.7  |-  ( ph  ->  A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) ) )
pjthlem.8  |-  T  =  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )
Assertion
Ref Expression
pjthlem1  |-  ( ph  ->  ( A  .,  B
)  =  0 )
Distinct variable groups:    x,  .-    x, A   
x, B    x, N    ph, x    x, U    x, V    x, T    x, W
Allowed substitution hints:    .+ ( x)    ., ( x)    L( x)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4  |-  ( ph  ->  W  e.  CHil )
2 hlcph 18775 . . . 4  |-  ( W  e.  CHil  ->  W  e.  CPreHil )
31, 2syl 17 . . 3  |-  ( ph  ->  W  e.  CPreHil )
4 pjthlem.4 . . 3  |-  ( ph  ->  A  e.  V )
5 pjthlem.2 . . . . 5  |-  ( ph  ->  U  e.  L )
6 pjthlem.v . . . . . 6  |-  V  =  ( Base `  W
)
7 pjthlem.l . . . . . 6  |-  L  =  ( LSubSp `  W )
86, 7lssss 15688 . . . . 5  |-  ( U  e.  L  ->  U  C_  V )
95, 8syl 17 . . . 4  |-  ( ph  ->  U  C_  V )
10 pjthlem.5 . . . 4  |-  ( ph  ->  B  e.  U )
119, 10sseldd 3182 . . 3  |-  ( ph  ->  B  e.  V )
12 pjthlem.h . . . 4  |-  .,  =  ( .i `  W )
136, 12cphipcl 18621 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  CC )
143, 4, 11, 13syl3anc 1184 . 2  |-  ( ph  ->  ( A  .,  B
)  e.  CC )
1514abscld 11912 . . . 4  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  e.  RR )
1615recnd 8856 . . 3  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  e.  CC )
1715resqcld 11265 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  RR )
1817renegcld 9205 . . . . . 6  |-  ( ph  -> 
-u ( ( abs `  ( A  .,  B
) ) ^ 2 )  e.  RR )
196, 12reipcl 18627 . . . . . . . 8  |-  ( ( W  e.  CPreHil  /\  B  e.  V )  ->  ( B  .,  B )  e.  RR )
203, 11, 19syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( B  .,  B
)  e.  RR )
21 2re 9810 . . . . . . 7  |-  2  e.  RR
22 readdcl 8815 . . . . . . 7  |-  ( ( ( B  .,  B
)  e.  RR  /\  2  e.  RR )  ->  ( ( B  .,  B )  +  2 )  e.  RR )
2320, 21, 22sylancl 645 . . . . . 6  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  e.  RR )
24 0re 8833 . . . . . . . 8  |-  0  e.  RR
2524a1i 12 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
26 peano2re 8980 . . . . . . . 8  |-  ( ( B  .,  B )  e.  RR  ->  (
( B  .,  B
)  +  1 )  e.  RR )
2720, 26syl 17 . . . . . . 7  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  RR )
286, 12ipge0 18628 . . . . . . . . 9  |-  ( ( W  e.  CPreHil  /\  B  e.  V )  ->  0  <_  ( B  .,  B
) )
293, 11, 28syl2anc 644 . . . . . . . 8  |-  ( ph  ->  0  <_  ( B  .,  B ) )
3020ltp1d 9682 . . . . . . . 8  |-  ( ph  ->  ( B  .,  B
)  <  ( ( B  .,  B )  +  1 ) )
3125, 20, 27, 29, 30lelttrd 8969 . . . . . . 7  |-  ( ph  ->  0  <  ( ( B  .,  B )  +  1 ) )
3227ltp1d 9682 . . . . . . . 8  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  <  ( ( ( B  .,  B
)  +  1 )  +  1 ) )
3320recnd 8856 . . . . . . . . . 10  |-  ( ph  ->  ( B  .,  B
)  e.  CC )
34 ax-1cn 8790 . . . . . . . . . . 11  |-  1  e.  CC
35 addass 8819 . . . . . . . . . . 11  |-  ( ( ( B  .,  B
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( B  .,  B )  +  1 )  +  1 )  =  ( ( B 
.,  B )  +  ( 1  +  1 ) ) )
3634, 34, 35mp3an23 1271 . . . . . . . . . 10  |-  ( ( B  .,  B )  e.  CC  ->  (
( ( B  .,  B )  +  1 )  +  1 )  =  ( ( B 
.,  B )  +  ( 1  +  1 ) ) )
3733, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 )  +  1 )  =  ( ( B  .,  B )  +  ( 1  +  1 ) ) )
38 df-2 9799 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3938oveq2i 5830 . . . . . . . . 9  |-  ( ( B  .,  B )  +  2 )  =  ( ( B  .,  B )  +  ( 1  +  1 ) )
4037, 39syl6reqr 2335 . . . . . . . 8  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  =  ( ( ( B  .,  B
)  +  1 )  +  1 ) )
4132, 40breqtrrd 4050 . . . . . . 7  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  <  ( ( B  .,  B )  +  2 ) )
4225, 27, 23, 31, 41lttrd 8972 . . . . . 6  |-  ( ph  ->  0  <  ( ( B  .,  B )  +  2 ) )
43 cphlmod 18604 . . . . . . . . . . . . . 14  |-  ( W  e.  CPreHil  ->  W  e.  LMod )
443, 43syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LMod )
45 pjthlem.8 . . . . . . . . . . . . . 14  |-  T  =  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )
46 hlphl 18776 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  CHil  ->  W  e. 
PreHil )
471, 46syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  e.  PreHil )
48 eqid 2284 . . . . . . . . . . . . . . . . 17  |-  (Scalar `  W )  =  (Scalar `  W )
49 eqid 2284 . . . . . . . . . . . . . . . . 17  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
5048, 12, 6, 49ipcl 16531 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  ( Base `  (Scalar `  W ) ) )
5147, 4, 11, 50syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  B
)  e.  ( Base `  (Scalar `  W )
) )
5248, 49hlress 18779 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  CHil  ->  RR  C_  ( Base `  (Scalar `  W
) ) )
531, 52syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  RR  C_  ( Base `  (Scalar `  W )
) )
5453, 27sseldd 3182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  ( Base `  (Scalar `  W )
) )
5520, 29ge0p1rpd 10411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  RR+ )
5655rpne0d 10390 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  =/=  0 )
5748, 49cphdivcl 18612 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  CPreHil  /\  (
( A  .,  B
)  e.  ( Base `  (Scalar `  W )
)  /\  ( ( B  .,  B )  +  1 )  e.  (
Base `  (Scalar `  W
) )  /\  (
( B  .,  B
)  +  1 )  =/=  0 ) )  ->  ( ( A 
.,  B )  / 
( ( B  .,  B )  +  1 ) )  e.  (
Base `  (Scalar `  W
) ) )
583, 51, 54, 56, 57syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )  e.  ( Base `  (Scalar `  W )
) )
5945, 58syl5eqel 2368 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  ( Base `  (Scalar `  W )
) )
60 eqid 2284 . . . . . . . . . . . . . 14  |-  ( .s
`  W )  =  ( .s `  W
)
6148, 60, 49, 7lssvscl 15706 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  U  e.  L )  /\  ( T  e.  ( Base `  (Scalar `  W ) )  /\  B  e.  U )
)  ->  ( T
( .s `  W
) B )  e.  U )
6244, 5, 59, 10, 61syl22anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  ( T ( .s
`  W ) B )  e.  U )
63 pjthlem.7 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) ) )
64 oveq2 5827 . . . . . . . . . . . . . . 15  |-  ( x  =  ( T ( .s `  W ) B )  ->  ( A  .-  x )  =  ( A  .-  ( T ( .s `  W ) B ) ) )
6564fveq2d 5489 . . . . . . . . . . . . . 14  |-  ( x  =  ( T ( .s `  W ) B )  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
6665breq2d 4036 . . . . . . . . . . . . 13  |-  ( x  =  ( T ( .s `  W ) B )  ->  (
( N `  A
)  <_  ( N `  ( A  .-  x
) )  <->  ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ) )
6766rspcv 2881 . . . . . . . . . . . 12  |-  ( ( T ( .s `  W ) B )  e.  U  ->  ( A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) )  ->  ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ) )
6862, 63, 67sylc 58 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  A
)  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
69 cphngp 18603 . . . . . . . . . . . . . 14  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
703, 69syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e. NrmGrp )
71 pjthlem.n . . . . . . . . . . . . . 14  |-  N  =  ( norm `  W
)
726, 71nmcl 18131 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  ( N `  A )  e.  RR )
7370, 4, 72syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  A
)  e.  RR )
746, 48, 60, 49lmodvscl 15638 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  T  e.  ( Base `  (Scalar `  W ) )  /\  B  e.  V )  ->  ( T ( .s
`  W ) B )  e.  V )
7544, 59, 11, 74syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T ( .s
`  W ) B )  e.  V )
76 pjthlem.m . . . . . . . . . . . . . . 15  |-  .-  =  ( -g `  W )
776, 76lmodvsubcl 15664 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( A  .-  ( T ( .s `  W ) B ) )  e.  V )
7844, 4, 75, 77syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )
796, 71nmcl 18131 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) )  e.  RR )
8070, 78, 79syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) )  e.  RR )
816, 71nmge0 18132 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  0  <_  ( N `  A
) )
8270, 4, 81syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N `  A ) )
836, 71nmge0 18132 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  0  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
8470, 78, 83syl2anc 644 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
8573, 80, 82, 84le2sqd 11274 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) )  <->  ( ( N `  A ) ^ 2 )  <_ 
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 ) ) )
8668, 85mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  <_  ( ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ^
2 ) )
8780resqcld 11265 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  e.  RR )
8873resqcld 11265 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  e.  RR )
8987, 88subge0d 9357 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  -  ( ( N `
 A ) ^
2 ) )  <->  ( ( N `  A ) ^ 2 )  <_ 
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 ) ) )
9086, 89mpbird 225 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( (
( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) ) )
91 2z 10049 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
92 rpexpcl 11116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  .,  B )  +  1 )  e.  RR+  /\  2  e.  ZZ )  ->  (
( ( B  .,  B )  +  1 ) ^ 2 )  e.  RR+ )
9355, 91, 92sylancl 645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  e.  RR+ )
9417, 93rerpdivcld 10412 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  e.  RR )
9594, 23remulcld 8858 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  RR )
9695recnd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  CC )
9796negcld 9139 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  CC )
986, 12cphipcl 18621 . . . . . . . . . . . 12  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  A  e.  V )  ->  ( A  .,  A )  e.  CC )
993, 4, 4, 98syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( A  .,  A
)  e.  CC )
10097, 99pncand 9153 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) )  +  ( A  .,  A
) )  -  ( A  .,  A ) )  =  -u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )
1016, 12, 71nmsq 18624 . . . . . . . . . . . . . 14  |-  ( ( W  e.  CPreHil  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  (
( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  =  ( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) )
1023, 78, 101syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( ( A 
.-  ( T ( .s `  W ) B ) )  .,  ( A  .-  ( T ( .s `  W
) B ) ) ) )
10312, 6, 76cphsubdir 18637 . . . . . . . . . . . . . 14  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  ( T ( .s `  W ) B )  e.  V  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V ) )  -> 
( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  ( A  .-  ( T ( .s `  W ) B ) ) )  -  (
( T ( .s
`  W ) B )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) ) )
1043, 4, 75, 78, 103syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  ( A  .-  ( T ( .s `  W ) B ) ) )  -  (
( T ( .s
`  W ) B )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) ) )
10512, 6, 76cphsubdi 18638 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V ) )  ->  ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  =  ( ( A  .,  A )  -  ( A  .,  ( T ( .s `  W ) B ) ) ) )
1063, 4, 4, 75, 105syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) ) )
107106oveq1d 5834 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) )
1086, 12cphipcl 18621 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( A  .,  ( T ( .s `  W ) B ) )  e.  CC )
1093, 4, 75, 108syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  e.  CC )
11012, 6, 76cphsubdi 18638 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  CPreHil  /\  (
( T ( .s
`  W ) B )  e.  V  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V ) )  ->  ( ( T ( .s `  W
) B )  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  =  ( ( ( T ( .s
`  W ) B )  .,  A )  -  ( ( T ( .s `  W
) B )  .,  ( T ( .s `  W ) B ) ) ) )
1113, 75, 4, 75, 110syl13anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( ( T ( .s `  W ) B ) 
.,  A )  -  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) ) ) )
1126, 12cphipcl 18621 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  CPreHil  /\  ( T ( .s `  W ) B )  e.  V  /\  A  e.  V )  ->  (
( T ( .s
`  W ) B )  .,  A )  e.  CC )
1133, 75, 4, 112syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  A
)  e.  CC )
1146, 12cphipcl 18621 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  CPreHil  /\  ( T ( .s `  W ) B )  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  e.  CC )
1153, 75, 75, 114syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  e.  CC )
116113, 115subcld 9152 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( T ( .s `  W
) B )  .,  A )  -  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) ) )  e.  CC )
117111, 116eqeltrd 2358 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  e.  CC )
11899, 109, 117subsub4d 9183 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( A  .,  A )  -  (
( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) ) )
11994recnd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  e.  CC )
12027recnd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  CC )
12134a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  CC )
122119, 120, 121adddid 8854 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  +  1 ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  +  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) ) )
12340oveq2d 5835 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  +  1 ) ) )
12412, 6, 48, 49, 60cphassr 18641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  CPreHil  /\  ( T  e.  ( Base `  (Scalar `  W )
)  /\  A  e.  V  /\  B  e.  V
) )  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( * `  T )  x.  ( A  .,  B ) ) )
1253, 59, 4, 11, 124syl13anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( * `  T )  x.  ( A  .,  B ) ) )
12614, 120, 56divcld 9531 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )  e.  CC )
12745, 126syl5eqel 2368 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  T  e.  CC )
128127cjcld 11675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  T
)  e.  CC )
129128, 14mulcomd 8851 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( * `  T )  x.  ( A  .,  B ) )  =  ( ( A 
.,  B )  x.  ( * `  T
) ) )
13014cjcld 11675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  ( A  .,  B ) )  e.  CC )
13114, 130, 120, 56divassd 9566 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A 
.,  B )  x.  ( * `  ( A  .,  B ) ) )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( A 
.,  B )  x.  ( ( * `  ( A  .,  B ) )  /  ( ( B  .,  B )  +  1 ) ) ) )
13214absvalsqd 11918 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  =  ( ( A  .,  B )  x.  (
* `  ( A  .,  B ) ) ) )
133132oveq1d 5834 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( ( A  .,  B )  x.  ( * `  ( A  .,  B ) ) )  /  (
( B  .,  B
)  +  1 ) ) )
13445fveq2i 5488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( * `
 T )  =  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )
13514, 120, 56cjdivd 11702 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( * `  ( A 
.,  B ) )  /  ( * `  ( ( B  .,  B )  +  1 ) ) ) )
13627cjred 11705 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( * `  (
( B  .,  B
)  +  1 ) )  =  ( ( B  .,  B )  +  1 ) )
137136oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( * `  ( A  .,  B ) )  /  ( * `
 ( ( B 
.,  B )  +  1 ) ) )  =  ( ( * `
 ( A  .,  B ) )  / 
( ( B  .,  B )  +  1 ) ) )
138135, 137eqtrd 2316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( * `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
139134, 138syl5eq 2328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  T
)  =  ( ( * `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
140139oveq2d 5835 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( A  .,  B )  x.  (
* `  T )
)  =  ( ( A  .,  B )  x.  ( ( * `
 ( A  .,  B ) )  / 
( ( B  .,  B )  +  1 ) ) ) )
141131, 133, 1403eqtr4rd 2327 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  .,  B )  x.  (
* `  T )
)  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( B  .,  B )  +  1 ) ) )
142125, 129, 1413eqtrd 2320 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( B  .,  B )  +  1 ) ) )
14317recnd 8856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  CC )
144143, 120mulcomd 8851 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  =  ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) )
145120sqvald 11236 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  =  ( ( ( B  .,  B
)  +  1 )  x.  ( ( B 
.,  B )  +  1 ) ) )
146144, 145oveq12d 5837 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A 
.,  B ) ) ^ 2 ) )  /  ( ( ( B  .,  B )  +  1 )  x.  ( ( B  .,  B )  +  1 ) ) ) )
147143, 120, 120, 56, 56divcan5d 9557 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A  .,  B ) ) ^ 2 ) )  /  ( ( ( B  .,  B )  +  1 )  x.  ( ( B  .,  B )  +  1 ) ) )  =  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) ) )
148146, 147eqtr2d 2317 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) ) )
14993rpcnd 10387 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  e.  CC )
15093rpne0d 10390 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  =/=  0 )
151143, 120, 149, 150div23d 9568 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
152142, 148, 1513eqtrd 2320 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
15394, 27remulcld 8858 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) )  e.  RR )
154152, 153eqeltrd 2358 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  e.  RR )
155154cjred 11705 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( A  .,  ( T ( .s `  W ) B ) ) )
15612, 6cphipcj 18629 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( ( T ( .s `  W
) B )  .,  A ) )
1573, 4, 75, 156syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( ( T ( .s `  W
) B )  .,  A ) )
158155, 157, 1523eqtr3d 2324 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  A
)  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
15912, 6, 48, 49, 60cph2ass 18642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e.  CPreHil  /\  ( T  e.  ( Base `  (Scalar `  W )
)  /\  T  e.  ( Base `  (Scalar `  W
) ) )  /\  ( B  e.  V  /\  B  e.  V
) )  ->  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) )  =  ( ( T  x.  ( * `  T ) )  x.  ( B  .,  B
) ) )
1603, 59, 59, 11, 11, 159syl122anc 1193 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  =  ( ( T  x.  ( * `
 T ) )  x.  ( B  .,  B ) ) )
16145fveq2i 5488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  T )  =  ( abs `  ( ( A  .,  B )  /  ( ( B 
.,  B )  +  1 ) ) )
16214, 120, 56absdivd 11931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( abs `  ( A 
.,  B ) )  /  ( abs `  (
( B  .,  B
)  +  1 ) ) ) )
16355rpge0d 10389 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  0  <_  ( ( B  .,  B )  +  1 ) )
16427, 163absidd 11899 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( abs `  (
( B  .,  B
)  +  1 ) )  =  ( ( B  .,  B )  +  1 ) )
165164oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) )  /  ( abs `  (
( B  .,  B
)  +  1 ) ) )  =  ( ( abs `  ( A  .,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
166162, 165eqtrd 2316 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
167161, 166syl5eq 2328 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( abs `  T
)  =  ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
168167oveq1d 5834 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) ^
2 ) )
169127absvalsqd 11918 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( T  x.  ( * `  T
) ) )
17016, 120, 56sqdivd 11252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) )  /  (
( B  .,  B
)  +  1 ) ) ^ 2 )  =  ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) ) )
171168, 169, 1703eqtr3d 2324 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( T  x.  (
* `  T )
)  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) ) )
172171oveq1d 5834 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  x.  ( * `  T
) )  x.  ( B  .,  B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) )
173160, 172eqtrd 2316 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) )
174158, 173oveq12d 5837 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( T ( .s `  W
) B )  .,  A )  -  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
175 pncan2 9053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  .,  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( B 
.,  B )  +  1 )  -  ( B  .,  B ) )  =  1 )
17633, 34, 175sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 )  -  ( B  .,  B ) )  =  1 )
177176oveq2d 5835 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  -  ( B 
.,  B ) ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) )
178119, 120, 33subdid 9230 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  -  ( B 
.,  B ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
179177, 178eqtr3d 2318 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
180174, 111, 1793eqtr4d 2326 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) )
181152, 180oveq12d 5837 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) )  +  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) ) )
182122, 123, 1813eqtr4rd 2327 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )
183182oveq2d 5835 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  A )  -  (
( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) )  =  ( ( A 
.,  A )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
184107, 118, 1833eqtrd 2320 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( A  .,  A )  -  (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) ) )
185102, 104, 1843eqtrd 2320 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( ( A 
.,  A )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
18699, 96negsubd 9158 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  .,  A )  +  -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )  =  ( ( A  .,  A
)  -  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
18799, 97addcomd 9009 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  .,  A )  +  -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )  =  (
-u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  +  ( A 
.,  A ) ) )
188185, 186, 1873eqtr2d 2322 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) )  +  ( A  .,  A
) ) )
1896, 12, 71nmsq 18624 . . . . . . . . . . . 12  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( N `  A
) ^ 2 )  =  ( A  .,  A ) )
1903, 4, 189syl2anc 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  =  ( A 
.,  A ) )
191188, 190oveq12d 5837 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( N `
 ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) )  =  ( ( -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  +  ( A 
.,  A ) )  -  ( A  .,  A ) ) )
19223renegcld 9205 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( B 
.,  B )  +  2 )  e.  RR )
193192recnd 8856 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( ( B 
.,  B )  +  2 )  e.  CC )
194143, 193, 149, 150div23d 9568 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  -u (
( B  .,  B
)  +  2 ) ) )
19523recnd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  e.  CC )
196119, 195mulneg2d 9228 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  -u (
( B  .,  B
)  +  2 ) )  =  -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) )
197194, 196eqtrd 2316 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) )
198100, 191, 1973eqtr4rd 2327 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) ) )
19990, 198breqtrrd 4050 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) ) )
20017, 192remulcld 8858 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  -u (
( B  .,  B
)  +  2 ) )  e.  RR )
201200, 93ge0divd 10419 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  <->  0  <_  ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  -u (
( B  .,  B
)  +  2 ) )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) ) ) )
202199, 201mpbird 225 . . . . . . 7  |-  ( ph  ->  0  <_  ( (
( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
203 mulneg12 9213 . . . . . . . 8  |-  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  CC  /\  ( ( B  .,  B )  +  2 )  e.  CC )  ->  ( -u ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
204143, 195, 203syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
205202, 204breqtrrd 4050 . . . . . 6  |-  ( ph  ->  0  <_  ( -u (
( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) ) )
206 prodge02 9599 . . . . . 6  |-  ( ( ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  e.  RR  /\  ( ( B  .,  B )  +  2 )  e.  RR )  /\  (
0  <  ( ( B  .,  B )  +  2 )  /\  0  <_  ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) ) ) )  ->  0  <_  -u (
( abs `  ( A  .,  B ) ) ^ 2 ) )
20718, 23, 42, 205, 206syl22anc 1185 . . . . 5  |-  ( ph  ->  0  <_  -u ( ( abs `  ( A 
.,  B ) ) ^ 2 ) )
20817le0neg1d 9339 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  <_  0  <->  0  <_  -u ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) )
209207, 208mpbird 225 . . . 4  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  <_ 
0 )
21015sqge0d 11266 . . . 4  |-  ( ph  ->  0  <_  ( ( abs `  ( A  .,  B ) ) ^
2 ) )
211 letri3 8902 . . . . 5  |-  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  =  0  <->  ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  <_ 
0  /\  0  <_  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) ) )
21217, 24, 211sylancl 645 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  =  0  <->  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  <_ 
0  /\  0  <_  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) ) )
213209, 210, 212mpbir2and 890 . . 3  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  =  0 )
21416, 213sqeq0d 11238 . 2  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  =  0 )
21514, 214abs00d 11922 1  |-  ( ph  ->  ( A  .,  B
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544    C_ wss 3153   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    < clt 8862    <_ cle 8863    - cmin 9032   -ucneg 9033    / cdiv 9418   2c2 9790   ZZcz 10019   RR+crp 10349   ^cexp 11098   *ccj 11575   abscabs 11713   Basecbs 13142   +g cplusg 13202  Scalarcsca 13205   .scvsca 13206   .icip 13207   -gcsg 14359   LModclmod 15621   LSubSpclss 15683   PreHilcphl 16522   normcnm 18093  NrmGrpcngp 18094   CPreHilccph 18596   CHilchl 18750
This theorem is referenced by:  pjthlem2  18796
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-tpos 6195  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-mhm 14409  df-submnd 14410  df-grp 14483  df-minusg 14484  df-sbg 14485  df-mulg 14486  df-subg 14612  df-ghm 14675  df-cntz 14787  df-cmn 15085  df-mgp 15320  df-rng 15334  df-cring 15335  df-ur 15336  df-oppr 15399  df-dvdsr 15417  df-unit 15418  df-invr 15448  df-dvr 15459  df-rnghom 15490  df-drng 15508  df-subrg 15537  df-staf 15604  df-srng 15605  df-lmod 15623  df-lss 15684  df-lmhm 15773  df-lvec 15850  df-sra 15919  df-rgmod 15920  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-phl 16524  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-flim 17628  df-fcls 17630  df-xms 17879  df-ms 17880  df-tms 17881  df-nm 18099  df-ngp 18100  df-nlm 18103  df-cncf 18376  df-clm 18555  df-cph 18598  df-cfil 18675  df-cmet 18677  df-cms 18751  df-bn 18752  df-hl 18753
  Copyright terms: Public domain W3C validator