MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjthlem1 Unicode version

Theorem pjthlem1 19326
Description: Lemma for pjth 19328. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.)
Hypotheses
Ref Expression
pjthlem.v  |-  V  =  ( Base `  W
)
pjthlem.n  |-  N  =  ( norm `  W
)
pjthlem.p  |-  .+  =  ( +g  `  W )
pjthlem.m  |-  .-  =  ( -g `  W )
pjthlem.h  |-  .,  =  ( .i `  W )
pjthlem.l  |-  L  =  ( LSubSp `  W )
pjthlem.1  |-  ( ph  ->  W  e.  CHil )
pjthlem.2  |-  ( ph  ->  U  e.  L )
pjthlem.4  |-  ( ph  ->  A  e.  V )
pjthlem.5  |-  ( ph  ->  B  e.  U )
pjthlem.7  |-  ( ph  ->  A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) ) )
pjthlem.8  |-  T  =  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )
Assertion
Ref Expression
pjthlem1  |-  ( ph  ->  ( A  .,  B
)  =  0 )
Distinct variable groups:    x,  .-    x, A   
x, B    x, N    ph, x    x, U    x, V    x, T    x, W
Allowed substitution hints:    .+ ( x)    ., ( x)    L( x)

Proof of Theorem pjthlem1
StepHypRef Expression
1 pjthlem.1 . . . 4  |-  ( ph  ->  W  e.  CHil )
2 hlcph 19306 . . . 4  |-  ( W  e.  CHil  ->  W  e.  CPreHil )
31, 2syl 16 . . 3  |-  ( ph  ->  W  e.  CPreHil )
4 pjthlem.4 . . 3  |-  ( ph  ->  A  e.  V )
5 pjthlem.2 . . . . 5  |-  ( ph  ->  U  e.  L )
6 pjthlem.v . . . . . 6  |-  V  =  ( Base `  W
)
7 pjthlem.l . . . . . 6  |-  L  =  ( LSubSp `  W )
86, 7lssss 16001 . . . . 5  |-  ( U  e.  L  ->  U  C_  V )
95, 8syl 16 . . . 4  |-  ( ph  ->  U  C_  V )
10 pjthlem.5 . . . 4  |-  ( ph  ->  B  e.  U )
119, 10sseldd 3341 . . 3  |-  ( ph  ->  B  e.  V )
12 pjthlem.h . . . 4  |-  .,  =  ( .i `  W )
136, 12cphipcl 19142 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  CC )
143, 4, 11, 13syl3anc 1184 . 2  |-  ( ph  ->  ( A  .,  B
)  e.  CC )
1514abscld 12226 . . . 4  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  e.  RR )
1615recnd 9103 . . 3  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  e.  CC )
1715resqcld 11537 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  RR )
1817renegcld 9453 . . . . . 6  |-  ( ph  -> 
-u ( ( abs `  ( A  .,  B
) ) ^ 2 )  e.  RR )
196, 12reipcl 19148 . . . . . . . 8  |-  ( ( W  e.  CPreHil  /\  B  e.  V )  ->  ( B  .,  B )  e.  RR )
203, 11, 19syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( B  .,  B
)  e.  RR )
21 2re 10058 . . . . . . 7  |-  2  e.  RR
22 readdcl 9062 . . . . . . 7  |-  ( ( ( B  .,  B
)  e.  RR  /\  2  e.  RR )  ->  ( ( B  .,  B )  +  2 )  e.  RR )
2320, 21, 22sylancl 644 . . . . . 6  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  e.  RR )
24 0re 9080 . . . . . . . 8  |-  0  e.  RR
2524a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
26 peano2re 9228 . . . . . . . 8  |-  ( ( B  .,  B )  e.  RR  ->  (
( B  .,  B
)  +  1 )  e.  RR )
2720, 26syl 16 . . . . . . 7  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  RR )
286, 12ipge0 19149 . . . . . . . . 9  |-  ( ( W  e.  CPreHil  /\  B  e.  V )  ->  0  <_  ( B  .,  B
) )
293, 11, 28syl2anc 643 . . . . . . . 8  |-  ( ph  ->  0  <_  ( B  .,  B ) )
3020ltp1d 9930 . . . . . . . 8  |-  ( ph  ->  ( B  .,  B
)  <  ( ( B  .,  B )  +  1 ) )
3125, 20, 27, 29, 30lelttrd 9217 . . . . . . 7  |-  ( ph  ->  0  <  ( ( B  .,  B )  +  1 ) )
3227ltp1d 9930 . . . . . . . 8  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  <  ( ( ( B  .,  B
)  +  1 )  +  1 ) )
3320recnd 9103 . . . . . . . . . 10  |-  ( ph  ->  ( B  .,  B
)  e.  CC )
34 ax-1cn 9037 . . . . . . . . . . 11  |-  1  e.  CC
35 addass 9066 . . . . . . . . . . 11  |-  ( ( ( B  .,  B
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( B  .,  B )  +  1 )  +  1 )  =  ( ( B 
.,  B )  +  ( 1  +  1 ) ) )
3634, 34, 35mp3an23 1271 . . . . . . . . . 10  |-  ( ( B  .,  B )  e.  CC  ->  (
( ( B  .,  B )  +  1 )  +  1 )  =  ( ( B 
.,  B )  +  ( 1  +  1 ) ) )
3733, 36syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 )  +  1 )  =  ( ( B  .,  B )  +  ( 1  +  1 ) ) )
38 df-2 10047 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3938oveq2i 6083 . . . . . . . . 9  |-  ( ( B  .,  B )  +  2 )  =  ( ( B  .,  B )  +  ( 1  +  1 ) )
4037, 39syl6reqr 2486 . . . . . . . 8  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  =  ( ( ( B  .,  B
)  +  1 )  +  1 ) )
4132, 40breqtrrd 4230 . . . . . . 7  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  <  ( ( B  .,  B )  +  2 ) )
4225, 27, 23, 31, 41lttrd 9220 . . . . . 6  |-  ( ph  ->  0  <  ( ( B  .,  B )  +  2 ) )
43 cphlmod 19125 . . . . . . . . . . . . . 14  |-  ( W  e.  CPreHil  ->  W  e.  LMod )
443, 43syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LMod )
45 pjthlem.8 . . . . . . . . . . . . . 14  |-  T  =  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )
46 hlphl 19307 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  CHil  ->  W  e. 
PreHil )
471, 46syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W  e.  PreHil )
48 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  (Scalar `  W )  =  (Scalar `  W )
49 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
5048, 12, 6, 49ipcl 16852 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  ( Base `  (Scalar `  W ) ) )
5147, 4, 11, 50syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  B
)  e.  ( Base `  (Scalar `  W )
) )
5248, 49hlress 19310 . . . . . . . . . . . . . . . . 17  |-  ( W  e.  CHil  ->  RR  C_  ( Base `  (Scalar `  W
) ) )
531, 52syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  RR  C_  ( Base `  (Scalar `  W )
) )
5453, 27sseldd 3341 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  ( Base `  (Scalar `  W )
) )
5520, 29ge0p1rpd 10663 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  RR+ )
5655rpne0d 10642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  =/=  0 )
5748, 49cphdivcl 19133 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  CPreHil  /\  (
( A  .,  B
)  e.  ( Base `  (Scalar `  W )
)  /\  ( ( B  .,  B )  +  1 )  e.  (
Base `  (Scalar `  W
) )  /\  (
( B  .,  B
)  +  1 )  =/=  0 ) )  ->  ( ( A 
.,  B )  / 
( ( B  .,  B )  +  1 ) )  e.  (
Base `  (Scalar `  W
) ) )
583, 51, 54, 56, 57syl13anc 1186 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )  e.  ( Base `  (Scalar `  W )
) )
5945, 58syl5eqel 2519 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  ( Base `  (Scalar `  W )
) )
60 eqid 2435 . . . . . . . . . . . . . 14  |-  ( .s
`  W )  =  ( .s `  W
)
6148, 60, 49, 7lssvscl 16019 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LMod  /\  U  e.  L )  /\  ( T  e.  ( Base `  (Scalar `  W ) )  /\  B  e.  U )
)  ->  ( T
( .s `  W
) B )  e.  U )
6244, 5, 59, 10, 61syl22anc 1185 . . . . . . . . . . . 12  |-  ( ph  ->  ( T ( .s
`  W ) B )  e.  U )
63 pjthlem.7 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) ) )
64 oveq2 6080 . . . . . . . . . . . . . . 15  |-  ( x  =  ( T ( .s `  W ) B )  ->  ( A  .-  x )  =  ( A  .-  ( T ( .s `  W ) B ) ) )
6564fveq2d 5723 . . . . . . . . . . . . . 14  |-  ( x  =  ( T ( .s `  W ) B )  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
6665breq2d 4216 . . . . . . . . . . . . 13  |-  ( x  =  ( T ( .s `  W ) B )  ->  (
( N `  A
)  <_  ( N `  ( A  .-  x
) )  <->  ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ) )
6766rspcv 3040 . . . . . . . . . . . 12  |-  ( ( T ( .s `  W ) B )  e.  U  ->  ( A. x  e.  U  ( N `  A )  <_  ( N `  ( A  .-  x ) )  ->  ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ) )
6862, 63, 67sylc 58 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  A
)  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
69 cphngp 19124 . . . . . . . . . . . . . 14  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
703, 69syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  W  e. NrmGrp )
71 pjthlem.n . . . . . . . . . . . . . 14  |-  N  =  ( norm `  W
)
726, 71nmcl 18650 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  ( N `  A )  e.  RR )
7370, 4, 72syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  A
)  e.  RR )
746, 48, 60, 49lmodvscl 15955 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  T  e.  ( Base `  (Scalar `  W ) )  /\  B  e.  V )  ->  ( T ( .s
`  W ) B )  e.  V )
7544, 59, 11, 74syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T ( .s
`  W ) B )  e.  V )
76 pjthlem.m . . . . . . . . . . . . . . 15  |-  .-  =  ( -g `  W )
776, 76lmodvsubcl 15977 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( A  .-  ( T ( .s `  W ) B ) )  e.  V )
7844, 4, 75, 77syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )
796, 71nmcl 18650 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) )  e.  RR )
8070, 78, 79syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) )  e.  RR )
816, 71nmge0 18651 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  A  e.  V )  ->  0  <_  ( N `  A
) )
8270, 4, 81syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N `  A ) )
836, 71nmge0 18651 . . . . . . . . . . . . 13  |-  ( ( W  e. NrmGrp  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  0  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
8470, 78, 83syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) )
8573, 80, 82, 84le2sqd 11546 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A )  <_  ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) )  <->  ( ( N `  A ) ^ 2 )  <_ 
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 ) ) )
8668, 85mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  <_  ( ( N `  ( A  .-  ( T ( .s
`  W ) B ) ) ) ^
2 ) )
8780resqcld 11537 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  e.  RR )
8873resqcld 11537 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  e.  RR )
8987, 88subge0d 9605 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <_  (
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  -  ( ( N `
 A ) ^
2 ) )  <->  ( ( N `  A ) ^ 2 )  <_ 
( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 ) ) )
9086, 89mpbird 224 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( (
( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) ) )
91 2z 10301 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
92 rpexpcl 11388 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  .,  B )  +  1 )  e.  RR+  /\  2  e.  ZZ )  ->  (
( ( B  .,  B )  +  1 ) ^ 2 )  e.  RR+ )
9355, 91, 92sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  e.  RR+ )
9417, 93rerpdivcld 10664 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  e.  RR )
9594, 23remulcld 9105 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  RR )
9695recnd 9103 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  CC )
9796negcld 9387 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  e.  CC )
986, 12cphipcl 19142 . . . . . . . . . . . 12  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  A  e.  V )  ->  ( A  .,  A )  e.  CC )
993, 4, 4, 98syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( A  .,  A
)  e.  CC )
10097, 99pncand 9401 . . . . . . . . . 10  |-  ( ph  ->  ( ( -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) )  +  ( A  .,  A
) )  -  ( A  .,  A ) )  =  -u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )
1016, 12, 71nmsq 19145 . . . . . . . . . . . . . 14  |-  ( ( W  e.  CPreHil  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V )  ->  (
( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  =  ( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) )
1023, 78, 101syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( ( A 
.-  ( T ( .s `  W ) B ) )  .,  ( A  .-  ( T ( .s `  W
) B ) ) ) )
10312, 6, 76cphsubdir 19158 . . . . . . . . . . . . . 14  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  ( T ( .s `  W ) B )  e.  V  /\  ( A  .-  ( T ( .s `  W ) B ) )  e.  V ) )  -> 
( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  ( A  .-  ( T ( .s `  W ) B ) ) )  -  (
( T ( .s
`  W ) B )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) ) )
1043, 4, 75, 78, 103syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  .-  ( T ( .s `  W ) B ) )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  ( A  .-  ( T ( .s `  W ) B ) ) )  -  (
( T ( .s
`  W ) B )  .,  ( A 
.-  ( T ( .s `  W ) B ) ) ) ) )
10512, 6, 76cphsubdi 19159 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V ) )  ->  ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  =  ( ( A  .,  A )  -  ( A  .,  ( T ( .s `  W ) B ) ) ) )
1063, 4, 4, 75, 105syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) ) )
107106oveq1d 6087 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) )
1086, 12cphipcl 19142 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( A  .,  ( T ( .s `  W ) B ) )  e.  CC )
1093, 4, 75, 108syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  e.  CC )
11012, 6, 76cphsubdi 19159 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  CPreHil  /\  (
( T ( .s
`  W ) B )  e.  V  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V ) )  ->  ( ( T ( .s `  W
) B )  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  =  ( ( ( T ( .s
`  W ) B )  .,  A )  -  ( ( T ( .s `  W
) B )  .,  ( T ( .s `  W ) B ) ) ) )
1113, 75, 4, 75, 110syl13anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( ( T ( .s `  W ) B ) 
.,  A )  -  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) ) ) )
1126, 12cphipcl 19142 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  CPreHil  /\  ( T ( .s `  W ) B )  e.  V  /\  A  e.  V )  ->  (
( T ( .s
`  W ) B )  .,  A )  e.  CC )
1133, 75, 4, 112syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  A
)  e.  CC )
1146, 12cphipcl 19142 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  CPreHil  /\  ( T ( .s `  W ) B )  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  e.  CC )
1153, 75, 75, 114syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  e.  CC )
116113, 115subcld 9400 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( T ( .s `  W
) B )  .,  A )  -  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) ) )  e.  CC )
117111, 116eqeltrd 2509 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  e.  CC )
11899, 109, 117subsub4d 9431 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A 
.,  A )  -  ( A  .,  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( A  .,  A )  -  (
( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) ) )
11994recnd 9103 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  e.  CC )
12027recnd 9103 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( B  .,  B )  +  1 )  e.  CC )
12134a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  CC )
122119, 120, 121adddid 9101 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  +  1 ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  +  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) ) )
12340oveq2d 6088 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  +  1 ) ) )
12412, 6, 48, 49, 60cphassr 19162 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  CPreHil  /\  ( T  e.  ( Base `  (Scalar `  W )
)  /\  A  e.  V  /\  B  e.  V
) )  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( * `  T )  x.  ( A  .,  B ) ) )
1253, 59, 4, 11, 124syl13anc 1186 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( * `  T )  x.  ( A  .,  B ) ) )
12614, 120, 56divcld 9779 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( A  .,  B )  /  (
( B  .,  B
)  +  1 ) )  e.  CC )
12745, 126syl5eqel 2519 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  T  e.  CC )
128127cjcld 11989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  T
)  e.  CC )
129128, 14mulcomd 9098 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( * `  T )  x.  ( A  .,  B ) )  =  ( ( A 
.,  B )  x.  ( * `  T
) ) )
13014cjcld 11989 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  ( A  .,  B ) )  e.  CC )
13114, 130, 120, 56divassd 9814 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( A 
.,  B )  x.  ( * `  ( A  .,  B ) ) )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( A 
.,  B )  x.  ( ( * `  ( A  .,  B ) )  /  ( ( B  .,  B )  +  1 ) ) ) )
13214absvalsqd 12232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  =  ( ( A  .,  B )  x.  (
* `  ( A  .,  B ) ) ) )
133132oveq1d 6087 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( ( A  .,  B )  x.  ( * `  ( A  .,  B ) ) )  /  (
( B  .,  B
)  +  1 ) ) )
13445fveq2i 5722 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( * `
 T )  =  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )
13514, 120, 56cjdivd 12016 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( * `  ( A 
.,  B ) )  /  ( * `  ( ( B  .,  B )  +  1 ) ) ) )
13627cjred 12019 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( * `  (
( B  .,  B
)  +  1 ) )  =  ( ( B  .,  B )  +  1 ) )
137136oveq2d 6088 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( * `  ( A  .,  B ) )  /  ( * `
 ( ( B 
.,  B )  +  1 ) ) )  =  ( ( * `
 ( A  .,  B ) )  / 
( ( B  .,  B )  +  1 ) ) )
138135, 137eqtrd 2467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( * `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( * `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
139134, 138syl5eq 2479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( * `  T
)  =  ( ( * `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
140139oveq2d 6088 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( A  .,  B )  x.  (
* `  T )
)  =  ( ( A  .,  B )  x.  ( ( * `
 ( A  .,  B ) )  / 
( ( B  .,  B )  +  1 ) ) ) )
141131, 133, 1403eqtr4rd 2478 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  .,  B )  x.  (
* `  T )
)  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( B  .,  B )  +  1 ) ) )
142125, 129, 1413eqtrd 2471 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( B  .,  B )  +  1 ) ) )
14317recnd 9103 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  CC )
144143, 120mulcomd 9098 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  =  ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) )
145120sqvald 11508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  =  ( ( ( B  .,  B
)  +  1 )  x.  ( ( B 
.,  B )  +  1 ) ) )
146144, 145oveq12d 6090 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A 
.,  B ) ) ^ 2 ) )  /  ( ( ( B  .,  B )  +  1 )  x.  ( ( B  .,  B )  +  1 ) ) ) )
147143, 120, 120, 56, 56divcan5d 9805 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( B  .,  B )  +  1 )  x.  ( ( abs `  ( A  .,  B ) ) ^ 2 ) )  /  ( ( ( B  .,  B )  +  1 )  x.  ( ( B  .,  B )  +  1 ) ) )  =  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) ) )
148146, 147eqtr2d 2468 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( B  .,  B )  +  1 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) ) )
14993rpcnd 10639 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  e.  CC )
15093rpne0d 10642 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 ) ^ 2 )  =/=  0 )
151143, 120, 149, 150div23d 9816 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  1 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
152142, 148, 1513eqtrd 2471 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
15394, 27remulcld 9105 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) )  e.  RR )
154152, 153eqeltrd 2509 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A  .,  ( T ( .s `  W ) B ) )  e.  RR )
155154cjred 12019 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( A  .,  ( T ( .s `  W ) B ) ) )
15612, 6cphipcj 19150 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e.  CPreHil  /\  A  e.  V  /\  ( T ( .s `  W ) B )  e.  V )  -> 
( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( ( T ( .s `  W
) B )  .,  A ) )
1573, 4, 75, 156syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( * `  ( A  .,  ( T ( .s `  W ) B ) ) )  =  ( ( T ( .s `  W
) B )  .,  A ) )
158155, 157, 1523eqtr3d 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  A
)  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) ) )
15912, 6, 48, 49, 60cph2ass 19163 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( W  e.  CPreHil  /\  ( T  e.  ( Base `  (Scalar `  W )
)  /\  T  e.  ( Base `  (Scalar `  W
) ) )  /\  ( B  e.  V  /\  B  e.  V
) )  ->  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) )  =  ( ( T  x.  ( * `  T ) )  x.  ( B  .,  B
) ) )
1603, 59, 59, 11, 11, 159syl122anc 1193 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  =  ( ( T  x.  ( * `
 T ) )  x.  ( B  .,  B ) ) )
16145fveq2i 5722 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( abs `  T )  =  ( abs `  ( ( A  .,  B )  /  ( ( B 
.,  B )  +  1 ) ) )
16214, 120, 56absdivd 12245 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( abs `  ( A 
.,  B ) )  /  ( abs `  (
( B  .,  B
)  +  1 ) ) ) )
16355rpge0d 10641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  0  <_  ( ( B  .,  B )  +  1 ) )
16427, 163absidd 12213 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( abs `  (
( B  .,  B
)  +  1 ) )  =  ( ( B  .,  B )  +  1 ) )
165164oveq2d 6088 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) )  /  ( abs `  (
( B  .,  B
)  +  1 ) ) )  =  ( ( abs `  ( A  .,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
166162, 165eqtrd 2467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( abs `  (
( A  .,  B
)  /  ( ( B  .,  B )  +  1 ) ) )  =  ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
167161, 166syl5eq 2479 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( abs `  T
)  =  ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) )
168167oveq1d 6087 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( ( ( abs `  ( A 
.,  B ) )  /  ( ( B 
.,  B )  +  1 ) ) ^
2 ) )
169127absvalsqd 12232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( abs `  T
) ^ 2 )  =  ( T  x.  ( * `  T
) ) )
17016, 120, 56sqdivd 11524 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) )  /  (
( B  .,  B
)  +  1 ) ) ^ 2 )  =  ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) ) )
171168, 169, 1703eqtr3d 2475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( T  x.  (
* `  T )
)  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) ) )
172171oveq1d 6087 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( T  x.  ( * `  T
) )  x.  ( B  .,  B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) )
173160, 172eqtrd 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( T ( .s `  W ) B ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) )
174158, 173oveq12d 6090 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( T ( .s `  W
) B )  .,  A )  -  (
( T ( .s
`  W ) B )  .,  ( T ( .s `  W
) B ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
175 pncan2 9301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  .,  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( B 
.,  B )  +  1 )  -  ( B  .,  B ) )  =  1 )
17633, 34, 175sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( B 
.,  B )  +  1 )  -  ( B  .,  B ) )  =  1 )
177176oveq2d 6088 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  -  ( B 
.,  B ) ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) )
178119, 120, 33subdid 9478 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( ( B  .,  B )  +  1 )  -  ( B 
.,  B ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
179177, 178eqtr3d 2469 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 )  =  ( ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  1 ) )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  ( B  .,  B ) ) ) )
180174, 111, 1793eqtr4d 2477 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( T ( .s `  W ) B )  .,  ( A  .-  ( T ( .s `  W ) B ) ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) )
181152, 180oveq12d 6090 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  1 ) )  +  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  1 ) ) )
182122, 123, 1813eqtr4rd 2478 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )
183182oveq2d 6088 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  .,  A )  -  (
( A  .,  ( T ( .s `  W ) B ) )  +  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) ) )  =  ( ( A 
.,  A )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
184107, 118, 1833eqtrd 2471 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  .,  ( A  .-  ( T ( .s `  W
) B ) ) )  -  ( ( T ( .s `  W ) B ) 
.,  ( A  .-  ( T ( .s `  W ) B ) ) ) )  =  ( ( A  .,  A )  -  (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) ) )
185102, 104, 1843eqtrd 2471 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( ( A 
.,  A )  -  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
18699, 96negsubd 9406 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  .,  A )  +  -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )  =  ( ( A  .,  A
)  -  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) ) )
18799, 97addcomd 9257 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  .,  A )  +  -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) ) )  =  (
-u ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  +  ( A 
.,  A ) ) )
188185, 186, 1873eqtr2d 2473 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  ( A  .-  ( T ( .s `  W
) B ) ) ) ^ 2 )  =  ( -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) )  +  ( A  .,  A
) ) )
1896, 12, 71nmsq 19145 . . . . . . . . . . . 12  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( N `  A
) ^ 2 )  =  ( A  .,  A ) )
1903, 4, 189syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N `  A ) ^ 2 )  =  ( A 
.,  A ) )
191188, 190oveq12d 6090 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( N `
 ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) )  =  ( ( -u ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  (
( B  .,  B
)  +  2 ) )  +  ( A 
.,  A ) )  -  ( A  .,  A ) ) )
19223renegcld 9453 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( B 
.,  B )  +  2 )  e.  RR )
193192recnd 9103 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( ( B 
.,  B )  +  2 )  e.  CC )
194143, 193, 149, 150div23d 9816 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  -u (
( B  .,  B
)  +  2 ) ) )
19523recnd 9103 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  .,  B )  +  2 )  e.  CC )
196119, 195mulneg2d 9476 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  / 
( ( ( B 
.,  B )  +  1 ) ^ 2 ) )  x.  -u (
( B  .,  B
)  +  2 ) )  =  -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) )
197194, 196eqtrd 2467 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  -u (
( ( ( abs `  ( A  .,  B
) ) ^ 2 )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) )  x.  ( ( B 
.,  B )  +  2 ) ) )
198100, 191, 1973eqtr4rd 2478 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) )  =  ( ( ( N `  ( A  .-  ( T ( .s `  W ) B ) ) ) ^ 2 )  -  ( ( N `  A ) ^ 2 ) ) )
19990, 198breqtrrd 4230 . . . . . . . 8  |-  ( ph  ->  0  <_  ( (
( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  /  (
( ( B  .,  B )  +  1 ) ^ 2 ) ) )
20017, 192remulcld 9105 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  -u (
( B  .,  B
)  +  2 ) )  e.  RR )
201200, 93ge0divd 10671 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) )  <->  0  <_  ( ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  x.  -u (
( B  .,  B
)  +  2 ) )  /  ( ( ( B  .,  B
)  +  1 ) ^ 2 ) ) ) )
202199, 201mpbird 224 . . . . . . 7  |-  ( ph  ->  0  <_  ( (
( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
203 mulneg12 9461 . . . . . . . 8  |-  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  CC  /\  ( ( B  .,  B )  +  2 )  e.  CC )  ->  ( -u ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
204143, 195, 203syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) )  =  ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  x.  -u ( ( B  .,  B )  +  2 ) ) )
205202, 204breqtrrd 4230 . . . . . 6  |-  ( ph  ->  0  <_  ( -u (
( abs `  ( A  .,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) ) )
206 prodge02 9847 . . . . . 6  |-  ( ( ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  e.  RR  /\  ( ( B  .,  B )  +  2 )  e.  RR )  /\  (
0  <  ( ( B  .,  B )  +  2 )  /\  0  <_  ( -u ( ( abs `  ( A 
.,  B ) ) ^ 2 )  x.  ( ( B  .,  B )  +  2 ) ) ) )  ->  0  <_  -u (
( abs `  ( A  .,  B ) ) ^ 2 ) )
20718, 23, 42, 205, 206syl22anc 1185 . . . . 5  |-  ( ph  ->  0  <_  -u ( ( abs `  ( A 
.,  B ) ) ^ 2 ) )
20817le0neg1d 9587 . . . . 5  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  <_  0  <->  0  <_  -u ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) )
209207, 208mpbird 224 . . . 4  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  <_ 
0 )
21015sqge0d 11538 . . . 4  |-  ( ph  ->  0  <_  ( ( abs `  ( A  .,  B ) ) ^
2 ) )
211 letri3 9149 . . . . 5  |-  ( ( ( ( abs `  ( A  .,  B ) ) ^ 2 )  e.  RR  /\  0  e.  RR )  ->  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  =  0  <->  ( ( ( abs `  ( A 
.,  B ) ) ^ 2 )  <_ 
0  /\  0  <_  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) ) )
21217, 24, 211sylancl 644 . . . 4  |-  ( ph  ->  ( ( ( abs `  ( A  .,  B
) ) ^ 2 )  =  0  <->  (
( ( abs `  ( A  .,  B ) ) ^ 2 )  <_ 
0  /\  0  <_  ( ( abs `  ( A  .,  B ) ) ^ 2 ) ) ) )
213209, 210, 212mpbir2and 889 . . 3  |-  ( ph  ->  ( ( abs `  ( A  .,  B ) ) ^ 2 )  =  0 )
21416, 213sqeq0d 11510 . 2  |-  ( ph  ->  ( abs `  ( A  .,  B ) )  =  0 )
21514, 214abs00d 12236 1  |-  ( ph  ->  ( A  .,  B
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697    C_ wss 3312   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   CCcc 8977   RRcr 8978   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    < clt 9109    <_ cle 9110    - cmin 9280   -ucneg 9281    / cdiv 9666   2c2 10038   ZZcz 10271   RR+crp 10601   ^cexp 11370   *ccj 11889   abscabs 12027   Basecbs 13457   +g cplusg 13517  Scalarcsca 13520   .scvsca 13521   .icip 13522   -gcsg 14676   LModclmod 15938   LSubSpclss 15996   PreHilcphl 16843   normcnm 18612  NrmGrpcngp 18613   CPreHilccph 19117   CHilchl 19275
This theorem is referenced by:  pjthlem2  19327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-mhm 14726  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-mulg 14803  df-subg 14929  df-ghm 14992  df-cntz 15104  df-cmn 15402  df-mgp 15637  df-rng 15651  df-cring 15652  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-invr 15765  df-dvr 15776  df-rnghom 15807  df-drng 15825  df-subrg 15854  df-staf 15921  df-srng 15922  df-lmod 15940  df-lss 15997  df-lmhm 16086  df-lvec 16163  df-sra 16232  df-rgmod 16233  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-phl 16845  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-cn 17279  df-cnp 17280  df-haus 17367  df-cmp 17438  df-tx 17582  df-hmeo 17775  df-fil 17866  df-flim 17959  df-fcls 17961  df-xms 18338  df-ms 18339  df-tms 18340  df-nm 18618  df-ngp 18619  df-nlm 18622  df-cncf 18896  df-clm 19076  df-cph 19119  df-cfil 19196  df-cmet 19198  df-cms 19276  df-bn 19277  df-hl 19278
  Copyright terms: Public domain W3C validator