Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42N Unicode version

Theorem pl42N 30172
Description: Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42.b  |-  B  =  ( Base `  K
)
pl42.l  |-  .<_  =  ( le `  K )
pl42.j  |-  .\/  =  ( join `  K )
pl42.m  |-  ./\  =  ( meet `  K )
pl42.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
pl42N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )

Proof of Theorem pl42N
StepHypRef Expression
1 pl42.b . . 3  |-  B  =  ( Base `  K
)
2 pl42.l . . 3  |-  .<_  =  ( le `  K )
3 pl42.j . . 3  |-  .\/  =  ( join `  K )
4 pl42.m . . 3  |-  ./\  =  ( meet `  K )
5 pl42.o . . 3  |-  ._|_  =  ( oc `  K )
6 eqid 2283 . . 3  |-  ( pmap `  K )  =  (
pmap `  K )
7 eqid 2283 . . 3  |-  ( + P `  K )  =  ( + P `  K )
81, 2, 3, 4, 5, 6, 7pl42lem4N 30171 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
9 simpl1 958 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
10 hllat 29553 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
119, 10syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  Lat )
12 simpl2 959 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
13 simpl3 960 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
141, 3latjcl 14156 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
1511, 12, 13, 14syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  Y )  e.  B )
16 simpr1 961 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Z  e.  B )
171, 4latmcl 14157 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
1811, 15, 16, 17syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
19 simpr2 962 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
201, 3latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  W  e.  B )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
2111, 18, 19, 20syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
22 simpr3 963 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
231, 4latmcl 14157 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W )  e.  B  /\  V  e.  B )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
2411, 21, 22, 23syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
251, 3latjcl 14156 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  .\/  W
)  e.  B )
2611, 12, 19, 25syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  W )  e.  B )
271, 3latjcl 14156 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  V  e.  B )  ->  ( Y  .\/  V
)  e.  B )
2811, 13, 22, 27syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( Y  .\/  V )  e.  B )
291, 4latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  W )  e.  B  /\  ( Y  .\/  V )  e.  B )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
3011, 26, 28, 29syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
311, 3latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
3211, 15, 30, 31syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
331, 2, 6pmaple 29950 . . 3  |-  ( ( K  e.  HL  /\  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  e.  B  /\  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)  ->  ( (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
349, 24, 32, 33syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
358, 34sylibrd 225 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   occoc 13216   joincjn 14078   meetcmee 14079   Latclat 14151   HLchlt 29540   pmapcpmap 29686   + Pcpadd 29984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-polarityN 30092  df-psubclN 30124
  Copyright terms: Public domain W3C validator