MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Unicode version

Theorem plyrem 19517
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 12595). If a polynomial  F is divided by the linear factor  x  -  A, the remainder is equal to  F ( A ), the evaluation of the polynomial at  A (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
plyrem.2  |-  R  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
Assertion
Ref Expression
plyrem  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 19414 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
2 simpl 445 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  S )
)
31, 2sseldi 3101 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  CC )
)
4 plyrem.1 . . . . . . . . . 10  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
54plyremlem 19516 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
65adantl 454 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
76simp1d 972 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  e.  (Poly `  CC )
)
86simp2d 973 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =  1 )
9 ax-1ne0 8686 . . . . . . . . . 10  |-  1  =/=  0
109a1i 12 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  1  =/=  0 )
118, 10eqnetrd 2430 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =/=  0
)
12 fveq2 5377 . . . . . . . . . 10  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
13 dgr0 19475 . . . . . . . . . 10  |-  (deg ` 
0 p )  =  0
1412, 13syl6eq 2301 . . . . . . . . 9  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
1514necon3i 2451 . . . . . . . 8  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0 p )
1611, 15syl 17 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  =/=  0 p )
17 plyrem.2 . . . . . . . 8  |-  R  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
1817quotdgr 19515 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( R  =  0 p  \/  (deg `  R )  <  (deg `  G )
) )
193, 7, 16, 18syl3anc 1187 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0 p  \/  (deg `  R )  <  (deg `  G )
) )
20 0lt1 9176 . . . . . . . 8  |-  0  <  1
2120, 8syl5breqr 3956 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  0  <  (deg `  G )
)
22 fveq2 5377 . . . . . . . . 9  |-  ( R  =  0 p  -> 
(deg `  R )  =  (deg `  0 p
) )
2322, 13syl6eq 2301 . . . . . . . 8  |-  ( R  =  0 p  -> 
(deg `  R )  =  0 )
2423breq1d 3930 . . . . . . 7  |-  ( R  =  0 p  -> 
( (deg `  R
)  <  (deg `  G
)  <->  0  <  (deg `  G ) ) )
2521, 24syl5ibrcom 215 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0 p  ->  (deg `  R )  <  (deg `  G )
) )
26 pm2.62 400 . . . . . 6  |-  ( ( R  =  0 p  \/  (deg `  R
)  <  (deg `  G
) )  ->  (
( R  =  0 p  ->  (deg `  R
)  <  (deg `  G
) )  ->  (deg `  R )  <  (deg `  G ) ) )
2719, 25, 26sylc 58 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  (deg `  G ) )
2827, 8breqtrd 3944 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  1
)
29 quotcl2 19514 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
303, 7, 16, 29syl3anc 1187 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  e.  (Poly `  CC ) )
31 plymulcl 19435 . . . . . . . . 9  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  o F  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
327, 30, 31syl2anc 645 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
33 plysubcl 19436 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
343, 32, 33syl2anc 645 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
3517, 34syl5eqel 2337 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  e.  (Poly `  CC )
)
36 dgrcl 19447 . . . . . 6  |-  ( R  e.  (Poly `  CC )  ->  (deg `  R
)  e.  NN0 )
3735, 36syl 17 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  e.  NN0 )
38 nn0lt10b 9957 . . . . 5  |-  ( (deg
`  R )  e. 
NN0  ->  ( (deg `  R )  <  1  <->  (deg
`  R )  =  0 ) )
3937, 38syl 17 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  <  1  <->  (deg `  R )  =  0 ) )
4028, 39mpbid 203 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  =  0 )
41 0dgrb 19460 . . . 4  |-  ( R  e.  (Poly `  CC )  ->  ( (deg `  R )  =  0  <-> 
R  =  ( CC 
X.  { ( R `
 0 ) } ) ) )
4235, 41syl 17 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  =  0  <->  R  =  ( CC  X.  { ( R `  0 ) } ) ) )
4340, 42mpbid 203 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( R ` 
0 ) } ) )
4443fveq1d 5379 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( CC 
X.  { ( R `
 0 ) } ) `  A ) )
4517fveq1i 5378 . . . . . . 7  |-  ( R `
 A )  =  ( ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `
 A )
46 plyf 19412 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
4746adantr 453 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F : CC --> CC )
48 ffn 5246 . . . . . . . . . 10  |-  ( F : CC --> CC  ->  F  Fn  CC )
4947, 48syl 17 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  Fn  CC )
50 plyf 19412 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
517, 50syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G : CC --> CC )
52 ffn 5246 . . . . . . . . . . 11  |-  ( G : CC --> CC  ->  G  Fn  CC )
5351, 52syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  Fn  CC )
54 plyf 19412 . . . . . . . . . . . 12  |-  ( ( F quot  G )  e.  (Poly `  CC )  ->  ( F quot  G ) : CC --> CC )
5530, 54syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G ) : CC --> CC )
56 ffn 5246 . . . . . . . . . . 11  |-  ( ( F quot  G ) : CC --> CC  ->  ( F quot  G )  Fn  CC )
5755, 56syl 17 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  Fn  CC )
58 cnex 8698 . . . . . . . . . . 11  |-  CC  e.  _V
5958a1i 12 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  CC  e.  _V )
60 inidm 3285 . . . . . . . . . 10  |-  ( CC 
i^i  CC )  =  CC
6153, 57, 59, 59, 60offn 5941 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  o F  x.  ( F quot  G ) )  Fn  CC )
62 eqidd 2254 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  ( F `  A )  =  ( F `  A ) )
636simp3d 974 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  =  { A } )
64 ssun1 3248 . . . . . . . . . . . . . . . 16  |-  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) )
6564a1i 12 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
6663, 65eqsstr3d 3134 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
67 snssg 3656 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6867adantl 454 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6966, 68mpbird 225 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
70 ofmulrt 19494 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  G : CC --> CC  /\  ( F quot  G ) : CC --> CC )  -> 
( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
7159, 51, 55, 70syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' ( G  o F  x.  ( F quot  G ) ) " {
0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
7269, 71eleqtrrd 2330 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } ) )
73 fniniseg 5498 . . . . . . . . . . . . 13  |-  ( ( G  o F  x.  ( F quot  G )
)  Fn  CC  ->  ( A  e.  ( `' ( G  o F  x.  ( F quot  G
) ) " {
0 } )  <->  ( A  e.  CC  /\  ( ( G  o F  x.  ( F quot  G )
) `  A )  =  0 ) ) )
7461, 73syl 17 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } )  <->  ( A  e.  CC  /\  ( ( G  o F  x.  ( F quot  G )
) `  A )  =  0 ) ) )
7572, 74mpbid 203 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  CC  /\  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 ) )
7675simprd 451 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 )
7776adantr 453 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 )
7849, 61, 59, 59, 60, 62, 77ofval 5939 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7978anabss3 799 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
8045, 79syl5eq 2297 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( F `
 A )  - 
0 ) )
81 ffvelrn 5515 . . . . . . . 8  |-  ( ( F : CC --> CC  /\  A  e.  CC )  ->  ( F `  A
)  e.  CC )
8246, 81sylan 459 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  e.  CC )
8382subid1d 9026 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F `  A
)  -  0 )  =  ( F `  A ) )
8480, 83eqtrd 2285 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( F `  A ) )
85 fvex 5391 . . . . . . 7  |-  ( R `
 0 )  e. 
_V
8685fvconst2 5581 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8786adantl 454 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8844, 84, 873eqtr3d 2293 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  =  ( R ` 
0 ) )
8988sneqd 3557 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { ( F `  A ) }  =  { ( R `  0 ) } )
9089xpeq2d 4620 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { ( R `
 0 ) } ) )
9143, 90eqtr4d 2288 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   _Vcvv 2727    u. cun 3076    C_ wss 3078   {csn 3544   class class class wbr 3920    X. cxp 4578   `'ccnv 4579   "cima 4583    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710    o Fcof 5928   CCcc 8615   0cc0 8617   1c1 8618    x. cmul 8622    < clt 8747    - cmin 8917   NN0cn0 9844   0 pc0p 18856  Polycply 19398   X pcidp 19399  degcdgr 19401   quot cquot 19502
This theorem is referenced by:  facth  19518
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-0p 18857  df-ply 19402  df-idp 19403  df-coe 19404  df-dgr 19405  df-quot 19503
  Copyright terms: Public domain W3C validator