MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Unicode version

Theorem plyrem 19687
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 12723). If a polynomial  F is divided by the linear factor  x  -  A, the remainder is equal to  F ( A ), the evaluation of the polynomial at  A (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
plyrem.2  |-  R  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
Assertion
Ref Expression
plyrem  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 19584 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
2 simpl 443 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  S )
)
31, 2sseldi 3180 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  CC )
)
4 plyrem.1 . . . . . . . . . 10  |-  G  =  ( X p  o F  -  ( CC  X.  { A } ) )
54plyremlem 19686 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
65adantl 452 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
76simp1d 967 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  e.  (Poly `  CC )
)
86simp2d 968 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =  1 )
9 ax-1ne0 8808 . . . . . . . . . 10  |-  1  =/=  0
109a1i 10 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  1  =/=  0 )
118, 10eqnetrd 2466 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =/=  0
)
12 fveq2 5527 . . . . . . . . . 10  |-  ( G  =  0 p  -> 
(deg `  G )  =  (deg `  0 p
) )
13 dgr0 19645 . . . . . . . . . 10  |-  (deg ` 
0 p )  =  0
1412, 13syl6eq 2333 . . . . . . . . 9  |-  ( G  =  0 p  -> 
(deg `  G )  =  0 )
1514necon3i 2487 . . . . . . . 8  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0 p )
1611, 15syl 15 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  =/=  0 p )
17 plyrem.2 . . . . . . . 8  |-  R  =  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )
1817quotdgr 19685 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( R  =  0 p  \/  (deg `  R )  <  (deg `  G )
) )
193, 7, 16, 18syl3anc 1182 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0 p  \/  (deg `  R )  <  (deg `  G )
) )
20 0lt1 9298 . . . . . . . 8  |-  0  <  1
2120, 8syl5breqr 4061 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  0  <  (deg `  G )
)
22 fveq2 5527 . . . . . . . . 9  |-  ( R  =  0 p  -> 
(deg `  R )  =  (deg `  0 p
) )
2322, 13syl6eq 2333 . . . . . . . 8  |-  ( R  =  0 p  -> 
(deg `  R )  =  0 )
2423breq1d 4035 . . . . . . 7  |-  ( R  =  0 p  -> 
( (deg `  R
)  <  (deg `  G
)  <->  0  <  (deg `  G ) ) )
2521, 24syl5ibrcom 213 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0 p  ->  (deg `  R )  <  (deg `  G )
) )
26 pm2.62 398 . . . . . 6  |-  ( ( R  =  0 p  \/  (deg `  R
)  <  (deg `  G
) )  ->  (
( R  =  0 p  ->  (deg `  R
)  <  (deg `  G
) )  ->  (deg `  R )  <  (deg `  G ) ) )
2719, 25, 26sylc 56 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  (deg `  G ) )
2827, 8breqtrd 4049 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  1
)
29 quotcl2 19684 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0 p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
303, 7, 16, 29syl3anc 1182 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  e.  (Poly `  CC ) )
31 plymulcl 19605 . . . . . . . . 9  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  o F  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
327, 30, 31syl2anc 642 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
33 plysubcl 19606 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  ( G  o F  x.  ( F quot  G ) )  e.  (Poly `  CC )
)  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
343, 32, 33syl2anc 642 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
3517, 34syl5eqel 2369 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  e.  (Poly `  CC )
)
36 dgrcl 19617 . . . . . 6  |-  ( R  e.  (Poly `  CC )  ->  (deg `  R
)  e.  NN0 )
3735, 36syl 15 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  e.  NN0 )
38 nn0lt10b 10080 . . . . 5  |-  ( (deg
`  R )  e. 
NN0  ->  ( (deg `  R )  <  1  <->  (deg
`  R )  =  0 ) )
3937, 38syl 15 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  <  1  <->  (deg `  R )  =  0 ) )
4028, 39mpbid 201 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  =  0 )
41 0dgrb 19630 . . . 4  |-  ( R  e.  (Poly `  CC )  ->  ( (deg `  R )  =  0  <-> 
R  =  ( CC 
X.  { ( R `
 0 ) } ) ) )
4235, 41syl 15 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  =  0  <->  R  =  ( CC  X.  { ( R `  0 ) } ) ) )
4340, 42mpbid 201 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( R ` 
0 ) } ) )
4443fveq1d 5529 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( CC 
X.  { ( R `
 0 ) } ) `  A ) )
4517fveq1i 5528 . . . . . . 7  |-  ( R `
 A )  =  ( ( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `
 A )
46 plyf 19582 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
4746adantr 451 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F : CC --> CC )
48 ffn 5391 . . . . . . . . . 10  |-  ( F : CC --> CC  ->  F  Fn  CC )
4947, 48syl 15 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  Fn  CC )
50 plyf 19582 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
517, 50syl 15 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G : CC --> CC )
52 ffn 5391 . . . . . . . . . . 11  |-  ( G : CC --> CC  ->  G  Fn  CC )
5351, 52syl 15 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  Fn  CC )
54 plyf 19582 . . . . . . . . . . . 12  |-  ( ( F quot  G )  e.  (Poly `  CC )  ->  ( F quot  G ) : CC --> CC )
5530, 54syl 15 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G ) : CC --> CC )
56 ffn 5391 . . . . . . . . . . 11  |-  ( ( F quot  G ) : CC --> CC  ->  ( F quot  G )  Fn  CC )
5755, 56syl 15 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  Fn  CC )
58 cnex 8820 . . . . . . . . . . 11  |-  CC  e.  _V
5958a1i 10 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  CC  e.  _V )
60 inidm 3380 . . . . . . . . . 10  |-  ( CC 
i^i  CC )  =  CC
6153, 57, 59, 59, 60offn 6091 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  o F  x.  ( F quot  G ) )  Fn  CC )
62 eqidd 2286 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  ( F `  A )  =  ( F `  A ) )
636simp3d 969 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  =  { A } )
64 ssun1 3340 . . . . . . . . . . . . . . . 16  |-  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) )
6564a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
6663, 65eqsstr3d 3215 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
67 snssg 3756 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6867adantl 452 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6966, 68mpbird 223 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
70 ofmulrt 19664 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  G : CC --> CC  /\  ( F quot  G ) : CC --> CC )  -> 
( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
7159, 51, 55, 70syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' ( G  o F  x.  ( F quot  G ) ) " {
0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
7269, 71eleqtrrd 2362 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } ) )
73 fniniseg 5648 . . . . . . . . . . . . 13  |-  ( ( G  o F  x.  ( F quot  G )
)  Fn  CC  ->  ( A  e.  ( `' ( G  o F  x.  ( F quot  G
) ) " {
0 } )  <->  ( A  e.  CC  /\  ( ( G  o F  x.  ( F quot  G )
) `  A )  =  0 ) ) )
7461, 73syl 15 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( `' ( G  o F  x.  ( F quot  G ) ) " { 0 } )  <->  ( A  e.  CC  /\  ( ( G  o F  x.  ( F quot  G )
) `  A )  =  0 ) ) )
7572, 74mpbid 201 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  CC  /\  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 ) )
7675simprd 449 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 )
7776adantr 451 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( G  o F  x.  ( F quot  G
) ) `  A
)  =  0 )
7849, 61, 59, 59, 60, 62, 77ofval 6089 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7978anabss3 796 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F  o F  -  ( G  o F  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
8045, 79syl5eq 2329 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( F `
 A )  - 
0 ) )
81 ffvelrn 5665 . . . . . . . 8  |-  ( ( F : CC --> CC  /\  A  e.  CC )  ->  ( F `  A
)  e.  CC )
8246, 81sylan 457 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  e.  CC )
8382subid1d 9148 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F `  A
)  -  0 )  =  ( F `  A ) )
8480, 83eqtrd 2317 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( F `  A ) )
85 fvex 5541 . . . . . . 7  |-  ( R `
 0 )  e. 
_V
8685fvconst2 5731 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8786adantl 452 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8844, 84, 873eqtr3d 2325 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  =  ( R ` 
0 ) )
8988sneqd 3655 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { ( F `  A ) }  =  { ( R `  0 ) } )
9089xpeq2d 4715 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { ( R `
 0 ) } ) )
9143, 90eqtr4d 2320 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   _Vcvv 2790    u. cun 3152    C_ wss 3154   {csn 3642   class class class wbr 4025    X. cxp 4689   `'ccnv 4690   "cima 4694    Fn wfn 5252   -->wf 5253   ` cfv 5257  (class class class)co 5860    o Fcof 6078   CCcc 8737   0cc0 8739   1c1 8740    x. cmul 8744    < clt 8869    - cmin 9039   NN0cn0 9967   0 pc0p 19026  Polycply 19568   X pcidp 19569  degcdgr 19571   quot cquot 19672
This theorem is referenced by:  facth  19688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-rlim 11965  df-sum 12161  df-0p 19027  df-ply 19572  df-idp 19573  df-coe 19574  df-dgr 19575  df-quot 19673
  Copyright terms: Public domain W3C validator