MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.2 Unicode version

Theorem pm1.2 501
Description: Axiom *1.2 of [WhiteheadRussell] p. 96, which they call "Taut". (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.2  |-  ( (
ph  \/  ph )  ->  ph )

Proof of Theorem pm1.2
StepHypRef Expression
1 id 21 . 2  |-  ( ph  ->  ph )
21, 1jaoi 370 1  |-  ( (
ph  \/  ph )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  oridm  502  rb-ax4  1515  sotrieq  4234  swoer  6574  paddidm  28934
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator