MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.4 Unicode version

Theorem pm1.4 377
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.4  |-  ( (
ph  \/  ps )  ->  ( ps  \/  ph ) )

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 375 . 2  |-  ( ph  ->  ( ps  \/  ph ) )
2 orc 376 . 2  |-  ( ps 
->  ( ps  \/  ph ) )
31, 2jaoi 370 1  |-  ( (
ph  \/  ps )  ->  ( ps  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  orcom  378  orcoms  380  pm2.3  557  pm2.36  818  pm2.37  819  rb-ax2  1509  abnotataxb  27264  orbi1rVD  27892
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator