MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.4 Unicode version

Theorem pm1.4 375
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.4  |-  ( (
ph  \/  ps )  ->  ( ps  \/  ph ) )

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 373 . 2  |-  ( ph  ->  ( ps  \/  ph ) )
2 orc 374 . 2  |-  ( ps 
->  ( ps  \/  ph ) )
31, 2jaoi 368 1  |-  ( (
ph  \/  ps )  ->  ( ps  \/  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357
This theorem is referenced by:  orcom  376  orcoms  378  pm2.3  555  pm2.36  816  pm2.37  817  rb-ax2  1508  abnotataxb  27988  prneimg  28183  orbi1rVD  28940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator